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Abstract 

The PPARγ binding affinity and transactivation profiles for hPPARα and hPPARγ of tetrahydroquinoline derivatives 
have been quantitatively analyzed in terms of topological 0D-, 1D- and 2D-descriptors based on molecular graph theory. 
Statistically sound models have been obtained between the biological actions and various DRAGON descriptors through 
combinatorial protocol-multiple linear regression (CP-MLR) computational procedure. Amongst the large number of 
such derived models, the most significant ones have only been discussed to draw meaningful conclusions. From the 
statistically significant models, it appeared that the mode of actions of titled compounds were different for hPPARα and 
hPPARγ transactivation profiles and PPARγ binding affinity. Applicability domain analysis carried out for PPARγ 
binding affinity revealed that the suggested model matches the high quality parameters with good fitting power and the 
capability of assessing external data and all of the compounds was within the applicability domain of the proposed 
model and were evaluated correctly. 

Keywords: QSAR; PPARγ binding affinity; hPPARα and hPPARγ transactivation activity; Combinatorial protocol in 
multiple linear regression (CP-MLR) analysis; Dragon descriptors; 4,4-Dimethyl-1,2,3,4-tetrahydroquinolines. 

1. Introduction

A complex metabolic disease, Type-2 diabetes (T2D), come with a defect in pancreatic-cell and is characterized by 
resistance of insulin in the liver and peripheral tissues [1]. T2D, due to lack of physical activity and excessive food intake, 
is presumed to attain epidemic proportions [2]. The treatment of T2D is currently aimed at to improve insulin secretion 
by reducing hyperglycemia or to reduce the insulin resistance of peripheral tissues. Most of such types of commonly 
used therapies were developed without considering therapeutic target. Therefore attempts were made to identify more 
suitable therapeutic strategies with better insight of the disease’s pathogenesis [3]. Peroxisomes proliferators activated 
receptors (PPARs), belonging to the family of nuclear receptors, are ligand-activated transcription factors [4]. Three 
subtypes namely PPAR, PPAR and PPAR/() have been identified after the discovery in 1990 by Issemen and Green 
[5]. These receptors are extensively involved in glucose and lipid homeostasis [6-8]. A number of agonists in this class 
have progressed to the clinical phase and marketed as anti-diabetic drugs [9,10].The hypolipidemic fibrates and 
glitazones class of insulin sensitizers, full-agonists of PPAR [4] and PPAR, respectively, has motivated 
pharmaceutical companies to focus on developing more potent and dual acting agonists belonging to these two 
subtypes. In the treatment of dyslipidemic T2D dual-acting PPAR/ agonists such as Tesaglitazar and Muraglitazar 
have been observed as a very attractive option [6,10, 13-18]. These compounds may also circumvent or reduce the main 
side effects such as weight gain or edema induced by the full PPAR agonists like TZDs [19]. The ligand–protein 
interactions of a typical PPAR agonists revealed that the acidic head group of ligand, known as carboxylic acid, is 
involved in up to four hydrogen bounds with the receptor which is crucial part for activation of PPAR. The central 
aromatic moiety is located in a hydrophobic pocket while the cyclic tail tolerates more polar substituents [20].  Based 
on the typical topology of synthetic PPAR agonists 4,4-dimethyl-1,2,3,4-tetrahydroquinoline has been considered as 
novel cyclic tail to design novel PPAR selective agonists and/or dual PPAR/ agonists [21]. A new series of 4,4-
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dimethyl-1,2,3,4-tetrahydroquinoline-based compounds as effective PPARselective agonists and dual-acting agonists 
of PPAR and PPARhas been reported [22,23].  The aim of present communication is to establish the quantitative 
relationships between the reported activities and molecular descriptors unfolding the substitutional changes in titled 
compounds. 

2. Material and methods 

2.1. Biological actions and theoretical molecular descriptors 

The reported eighteen tetrahydroquinoline derivatives are considered as the data set for this study [22,23]. The 
structures of these analogues are given in Table 1.  

Table 1 Structuresa of tetrahydroquinoline derivatives 
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aTaken from references[22,23],  bRosiglitazone and cTesaglitazar. 
 

These derivatives were evaluated for binding affinity to human PPARγ using a competitive binding assay with [3H] 
Rosiglitazone. Functional activity was determined in a transient transfection assay using pGAL4hPPAR and 
pGAL4hPPAR 

The reported binding affinity in terms of pKi(M) and transactivation activity in terms of pEC50(M) of these congeners is 
presented in Table 3 and Table 6, respectively. For modeling purpose the data set has been sub-divided into training set 
(for model development) and test set (for external prediction or validation). The selection of test set compounds was 
made using an in-house written randomization program. The test and training set compounds are mentioned in Table 
3.  

The structures of the all the compounds (listed in Table 1)were drawn in 2D ChemDraw [24] and subjected to energy 
minimization in the MOPAC using the AM1 procedure for closed shell system after converting these into 3D modules. 
The energy minimization was carried out to attain a well-defined conformer relationship among the congeners under 
study. The molecular descriptors of titled compounds were computed using DRAGON software [25]. This software offers 
a large number of descriptors corresponding to ten different classes of 0D- to 2D-descriptor modules. The different 
descriptor classes include the constitutional, topological, molecular walk counts, BCUT descriptors, Galvez topological 
charge indices, 2D-autocorrelations, functional groups, atom-centered fragments, empirical descriptors and the 
properties describing descriptors. These descriptors are characteristic to the molecules under multi-descriptor 
environment. A total number of 486 descriptors, belonging to 0D- to 2D- modules, have been computed to obtain most 
appropriate models describing the biological activity. 

2.2. Model development and validation  

A filter based variable selection procedure embedded in the combinatorial protocol in multiple linear regression (CP-
MLR) [26] method has been utilized for developing statistical significant models divulging quantitative structure-
activity relationship (QSAR). CP-MLR procedure has successfully been applied to obtain QSAR rationales [27-32]. 
Descriptors which are inter-correlated beyond 0.9 (descriptor vs. descriptor, r > 0.9) and poorly correlated with 
biological actions (descriptor vs. activity, r < 0.1) has been excluded prior to the application of CP-MLR procedure. In 
this way the reduced descriptor data set contained 55, 39 and 67 as relevant descriptors for PPARγ binding, and hPPARα 
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and hPPARγ transactivation activities, respectively. The descriptors have been scaled between the intervals 0 to 1 [33] 
to ensure that a descriptor will not dominate simply because it has larger or smaller pre-scaled value compared to the 
other descriptors and the scaled descriptors would have equal potential to influence the QSAR models.  

The subdivision of data set into training set and test set have been used, respectively, for model development and 
external prediction. Goodness of fit of the models was assessed by examining the multiple correlation coefficient (r), the 
standard deviation (s) and the F-ratio between the variances of calculated and observed activities (F). The internal 
validation of derived model was ascertained through the cross-validated index, Q2, from leave-one-out (Q2LOO) and 
leave-three-out (Q2L3O) procedures. The LOO method creates a number of modified data sets by taking away one 
compound from the parent data set in such a way that each observation has been removed once only. Then one model 
is developed for each reduced data set, and the response values of the deleted observations are predicted from these 
models.  

The external validation or predictive power of derived model is based on test set compounds. The index r2Test, 
representing the squared correlation coefficient between the observed and predicted data of the test-set, has been used 
to infer the same. A value greater than 0.5 of r2Test suggests that the model obtained from training set has a reliable 
predictive power. Chance correlations, if any, associated with the CP-MLR models were explored through randomization 
test [34, 35] by repeated scrambling of the biological response. Every model has been subjected to 100 such simulation 
runs. This has been used as a measure to express the percent chance correlation of the model under scrutiny.  

To support the findings, a partial least squares (PLS) analysis has been carried out on descriptors identified through CP-
MLR. The PLS analysis facilitates the development of a ‘single window’ structure‐activity model and help to categorize 
the potentiality of identified descriptors in explaining the PPARγ binding profiles of the compounds. It also gives an 
opportunity to make a comparison of the relative significance among the descriptors. The fraction contributions 
obtainable from the normalized regression coefficients of the descriptors allow this comparison within the modeled 
activity. 

2.3. Applicability domain 

The utility of a QSAR model is based on its accurate predictive ability for new congeners. A model is valid only within 
its training domain, and new compounds must be assessed as belonging to this domain before the model is applied. The 
applicability domain is assessed by the leverage values for each compound [36, 37]. A Williams plot (the plot of 
standardized residuals versus leverage values (h) can then be used for an immediate and simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
applicability domain is established inside a squared area within ± β.(standard deviations) and a leverage threshold h*. 
The threshold h* is generally fixed at 3(k+1)/n (n is the number of compounds in the training-set and k is the number 
of independent descriptors of the model) whereas β = 2 or 3. Prediction must be considered unreliable for compounds 
with a high leverage value (h > h*). On the other hand, when the leverage value of a compound is lower than the 
threshold value, the probability of agreement between predicted and observed values is as high as that for the training 
set compounds. 

3. Results and discussion 

3.1. QSAR results 

Initially, the pEC50 values pertaining to hPPARα and hPPARγ transactivation actions were correlated to pKi values 
corresponding to PPARγ binding activity, and pEC50 values pertaining to hPPARα and hPPARγ transactivations for all 
active congeners to confer the diversity between the binding and transactivation activities, and hPPARα and hPPARγ 
transactivations. The derived correlations are given in Equations (1)-(3).  

pKi (PPARγ) = -0.465 pEC50 (hPPARα) + 10.122 
n = 13, r = 0.458, s = 0.932, F = 2.927              (1) 

pKi (PPARγ)= 1.051 pEC50 (hPPARγ) -1.313 
n = 15, r = 0.484, s = 1.052, F = 3.970              (2) 

pEC50 (hPPARγ) = 0.059 pEC50 (hPPARα) +7.362 
n = 14, r = 0.138, s = 0.430, F = 0.232              (3) 



Parihar and Sharma/ World Journal of Biology Pharmacy and Health Sciences, 2020, 03(01), 038–053 

42 
 

where n, r, s and F represent respectively the number of data points, the multiple correlation coefficient, the standard 
deviation and the F-ratio between the variances of calculated and observed activities. All these equations have divulged 
not very much significant statistical parameters. No correlation between EC50 values obtained from transactivation 
PPAR tests and Ki values from binding tests suggested that these derivatives may have a binding site different from the 
Rosiglitazone binding site. This ensures us that the biological actions in terms of binding and or transactivations are 
independent. Therefore we have considered all types of biological endpoints as the dependent variables in the 
subsequent parametric analysis. 

The PPARγ binding activity of titled compounds was investigated with 55 relevant 0D-, 1D- and 2D-descriptors. A 
training set consisting 11 compounds was considered for the development of QSAR models and test set involving 04 
(nearly one-fourth of the total) compounds for the external validation of derived significant models. CP-MLR resulted 
one model in one parameter and ten models in two parameters having r2Test> 0.5. These models shared 12 descriptors 
and are listed in Table 2 along with their physical meaning, average regression coefficient and total incidences. The sign 
of the regression coefficients indicates the direction of influence of explanatory variables in above models. The positive 
regression coefficient associated to a descriptor will augment the activity profile of a compound while the negative 
coefficient will cause detrimental effect to it. 

Table 2 Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in 
modeling the binding and transactivation activity. 

Descriptor; average regression coefficient  and (incidence) in analysis for the: 

Binding activity Transactivation activity 

PPARγ hPPARα hPPARγ 

Constitutional descriptors (CONST): 

MW; -1.458(1) AMW; -2.340(1) Me; -0.774 (3)   

AMW; 1.565(1),  Me; -1.254(1) RBN; -1.380(1)   

Me;  1.078(1)   

Topological descriptors (TOPO): 

MAXDP; -1.529(1) MAXDP; -1.943(2) HNar; 1.543 (3)   

X2A; 1.826(1) IC1; -2.188(2) IVDE; -2.034(1) 

T(N..O); -1.760(1) T(N..N); -2.268(6) IC2; -1.111(1) 

  SIC4; 2.000(1) 

2D autocorrelations (2D-AUTO): 

GATS4v; 1.478(1) MATS7m; -1.546(1) MATS5v; 2.294(3)    

GATS2e; -1.508(1) MATS8m; -1.431(1) MATS8v; 1.333(1)   

 GATS5v; -1.998(1) MATS5e; -1.393(4) 

 GATS6e; 1.326(1) MATS8e; 1.243(6) 

  GATS2e; 0.908(1) 

  GATS6e; 1.316(5)   

  GATS8e; -1.102(1)    

Functional groups (FUNC): 

nCconjR; -1.022(1)  nCs; -0.631(1) 

nROR; 1.006(1)  nCt; 0.827(1)   

nHDon; 2.742(5)   

Atom-centered fragments (ACF): 

O-060; -2.424(6)  C-006;  -1.035(3) 

  C-008; 1.544(8) 

Empirical descriptors (EMP): 

  Hy; 1.529(1) 
aThe descriptors are identified from the two parameter models for PPARγ binding activity and hPPARα transactivation activity profiles , emerged 
from CP-MLR protocol with filter-1 as 0.3, filter-2 as 2.0, filter-3 as 0.5 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 11 and 10 compounds, 
respectively; and for PPARγ transactivation activity profile three parameter models  with filter-1 as 0.3, filter-2 as 2.0, filter-3 as 0.878 and filter-4 as 
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0.3 ≤ q2 ≤1.0 with a training set of 13 compounds. bThe average regression coefficient of the descriptor corresponding to all models and the total 
number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models. CONST: MW, 
molecular weight; AMW; average molecular weight; Me, mean atomic Sanderson electronegativity (scaled on Carbon atom); RBN, number of rotatable 
bonds; TOPO: MAXDP maximal electrotopological positive variation; X2A, average connectivity index chi-2; T(N..O), sum of topological distances 
between N..O; T(N..N), sum of topological distances between N..N; HNar, Narumi harmonic index; IVDE, mean information content vertex degree 
equality; IC1, information content index (neighborhood symmetry of 1-order); IC2, information content index (neighborhood symmetry of 2-order); 
SIC4, structural information content (neighborhood symmetry of 4-order);  2D-AUTO: MATS7m, Moran autocorrelation of lag-7/ weighted by atomic 
masses; MATS8m, Moran autocorrelation of lag-7/ weighted by atomic masses; MATS5v, Moran autocorrelation of lag-5/ weighted by atomic van der 
Waals  volumes; MATS8v, Moran autocorrelation of lag-8/ weighted by atomic van der Waals  volumes; MATS5e, Moran autocorrelation of lag-5/ 
weighted by atomic Sanderson electronegativities; MATS8e, Moran autocorrelation of lag-8/ weighted by atomic Sanderson electronegativities; 
GATS4v, Geary autocorrelation of lag-4/ weighted by atomic van der Waals  volumes; GATS5v, Geary autocorrelation of lag-5/ weighted by atomic 
van der Waals  volumes; GATS2e, Geary autocorrelation of lag-2/ weighted by atomic Sanderson electronegativities; GATS6e, Geary autocorrelation 
of lag-6/ weighted by atomic Sanderson electronegativities; GATS8e, Geary autocorrelation of lag-8/ weighted by atomic Sanderson 
electronegativities;  FUNC: nCconjR; number of exo-conjugated C(sp2);  nROR; number of aliphatic ethers;  nHDon; number of donor atoms for H-
bonds (with N and O); nCs; number of total secondary C(sp3);  nCt; number of total tertiary C(sp3); ACF: O-060, Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X; C-
006, CH2RX; C-008, CHR2X; EMP: Hy, hydrophilic factor. 

 
The selected highly significant two parameter models, emerged in CP-MLR for the PPARγ binding activity are given 
below. 

pKi= -1.529(0.437)MAXDP + 2.379(0.394)nHDon + 6.328  
n = 11, r = 0.940, s = 0.455, F = 30.721, q2LOO = 0.811, q2L3O = 0.781, r2Test= 0.791        (4) 

pKi= 1.006(0.295)nROR + 2.952(0.396)nHDon + 4.866  
n = 11, r = 0.938, s = 0.462, F = 29.711, q2LOO = 0.764, q2L3O = 0.784, r2Test= 0.662        (5) 

pKi= 1.826(0.534)X2A – 2.258(0.378)O-060 + 7.011  
n = 11, r = 0.934, s = 0.478, F = 27.460, q2LOO = 0.813, q2L3O = 0.810, r2Test= 0.603        (6) 

pKi= 1.565(0.479)AMW – 2.295(0.387)O-060 + 6.892  
n = 11, r = 0.930, s = 0.491, F = 25.847, q2LOO = 0.740, q2L3O = 0.706, r2Test= 0.725        (7) 

The data within the parentheses are the standard errors associated with regression coefficients. The descriptors, 
participated in above models, are from constitutional (AMW), topological (MAXDP and X2A), functional group (nHDon 
and nROR) and atom-centered fragment (O-060) class. Constitutional class descriptors are molecular connectivity and 
conformations independent 0D descriptors. The emerged constitutional class descriptor AMW (average molecular 
weight) has shown positive correlation to activity favoring high average molecular weight of a molecule for elevated 
binding activity. Topological class descriptors are based on a graph representation of the molecule and are numerical 
quantifiers of molecular topology obtained by the application of algebraic operators to matrices representing molecular 
graphs and whose values are independent of vertex numbering or labeling. They can be sensitive to one or more 
structural features of the molecules such as size, shape, symmetry, branching and cyclicity and can also encode chemical 
information concerning atom type and bond multiplicity. The negative contribution of descriptor MAXDP (maximal 
electrotopological positive variation) and positive contribution of descriptor X2A (average connectivity index, chi-2) 
suggested that a lower value of descriptor MAXDP and a higher value of X2A would be supportive to the activity.  

Descriptors nHDon and nROR are functional group class descriptors. Descriptor nHDon represents number of donor 
atoms for H-bonds (with N and O) and nROR corresponds to number of aliphatic ethers. Presence and or higher number 
of both the types of functionality in a molecular structure would be favorable to the binding activity. Descriptor O-060 
is representative of atom centered fragments (ACF) class. ACF class descriptors are based on the counting of 120 atom 
centered fragments, defined by Ghose-Crippen in a molecular structure. Descriptor O-060 represents Al-O-Ar/Ar-O-
Ar/R..O..R/R-O-C=X type fragments in a molecular structure. The negative sign of correlation coefficient of this 
descriptor recommends absence of such types of fragments for elevated PPARbinding profile. Based on the total 
number of incidences, it is also clear that descriptors O-060 and nHDon appeared as most relevant descriptors to explain 
the binding profiles of titled compound (Table 2).  

In above equations (4) to (7), the F-values are significant at 99% level. Value greater than 0.5 of both the indices q2LOO 
and q2L3O showed internal robustness of the models whereas accountability of selected test-set for external validation 
reflected through the r2Test values (> 0.5). These models are able to estimate up to 88.36 percent of variance in observed 
activity of the compounds. The derived statistical parameters of these four models in two parameters have shown the 
statistically significance, therefore, these models were used to calculate the PPARγ binding activity profiles of all the 
compounds and are included in Table 3 for the sake of comparison with observed ones.  
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Table 3 Observed, calculated and predicted PPAR binding activities of Tetrahydroquinolines. 

Cpd. 

 

pKi (M)a 

Obsdb. 
Eq. (4) Eq. (5) Eq. (6) Eq. (7) PLS 

Calc. Predc. Calc.  Predc. Calc.  Predc. Calc.  Predc. Calc.  Predc. 

1 8.10 8.35 8.47 7.82 7.60 7.69 7.61 8.46 8.83 8.16 8.19 

2 7.74 7.52 7.46 7.35 7.28 7.71 7.45 7.02 6.66 7.55 7.18 

3 5.00 4.80 4.62 4.87 4.76 4.80 4.68 5.08 5.13 4.83 4.74 

4 5.00 5.67 5.85 4.87 4.76 4.75 4.58 5.09 5.15 5.28 5.37 

5 6.21 5.51 5.32 5.87 5.77 6.04 6.01 5.84 5.75 5.70 5.59 

6 5.00 5.50 5.63 5.87 6.14 6.09 6.24 5.75 5.95 5.57 5.71 

7d 5.00 5.50 -d 5.87 -d 6.09 -d 5.75 -d 5.57 -d 

8d 7.32 7.34 -d 7.35 -d 7.27 -d 7.07 -d 7.13 -d 

9e -e -e -e -e -e -e -e -e -e -e -e 

10 7.05 7.34 7.39 7.35 7.41 7.27 7.32 7.07 7.08 7.13 7.14 

11d 7.74 7.34 -d 7.35 -d 7.27 -d 7.07 -d 7.13 -d 

12 7.27 7.32 7.33 7.35 7.36 7.38 7.40 7.05 6.98 7.19 7.17 

13 7.74 7.29 7.22 7.35 7.28 7.32 7.24 7.16 7.02 7.21 7.11 

14d 6.60 7.31 -d 7.35 -d 7.17 -d 6.97 -d 7.15 -d 

15e -e -e -e -e -e -e -e -e -e -e -e 

16 7.48 7.28 7.25 7.35 7.32 7.74 7.80 7.86 7.96 7.92 8.04 

17 7.27 7.29 7.34 7.82 8.24 7.06 7.00 7.48 7.52 7.33 7.38 

18e -e -e -e -e -e -e -e -e -e -e -e 
aOn molar basis, Ki represents the binding affinity to human PPARγ using a competitive binding assay with an appropriate 
radioligand[3H]Rosiglitazone; bTaken from ref. [22,23]; cLeave-one-out (LOO) procedure; dCompound included in test set and eCompound with 
uncertain activity, not part of data set. 

 
A close agreement between them has been observed. Additionally, the graphical display, showing the variation of 
observed versus calculated activities is given in Figure 1 to ensure the goodness of fit for each of these four models. 
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Figure 1 Plot of observed and calculated pKivalues for training- and test-set compounds. 

A PLS analysis has also been carried out on 12 descriptors (identified through CP-MLR) to support the study. The results 
of PLS analysis are given in Table 4. For this purpose, the descriptors have been autoscaled (zero mean and unit s.d.) to 
give each one of them equal weight in the analysis. In the PLS cross‐validation, two components have been found to be 
the optimum for these 12 descriptors and they explained 91.4 percent variance in the activity (r2 = 0.914).The MLR‐like 
PLS coefficients of these 12 descriptors are given in Table 4.  
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Table 4 PLS and MLR-like PLS models from the descriptors of two parameter CP-MLR models for PPARγ binding affinity. 

A: PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 0.483(0.057) 

Component-2 0.306(0.077) 

Constant 6.714 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)b Order  

1 MW 0.025(0.017) 10 

2 AMW 0.118(0.082) 4 

3 Me 0.071(0.049) 7 

4 MAXDP -0.167(-0.116) 3 

5 X2A 0.103(0.071) 5 

6 T(N..O) 0.020(0.014) 11 

7 GATS4v -0.025(-0.018) 9 

8 GATS2e -0.087(-0.060) 6 

9 nCconjR -0.020(-0.014) 12 

10 nROR 0.070(0.048) 8 

11 nHDon 0.364(0.252) 2 

12 O-060 -0.376(-0.260) 1 

Constant  6.529 

C: PLS regression statistics Values 

n 11 

r 0.956 

s 0.392 

F 42.800 

q2LOO 0.850 

q2L3O 0.887 

r2Test 0.762 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original values; 
f.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the auto scaled (zero 
mean and unit s.d.) data. 

 

The calculated activity values of training- and test-set compounds are in close agreement to that of the observed ones 
and are listed in Table 3. For the sake of comparison, the plot between observed and calculated activities (through PLS 
analysis) for the training- and test-set compounds is given in Figure 1. Figure 2 shows a plot of the fraction contribution 
of normalized regression coefficients of these descriptors to the activity (Table 4). 
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Figure 2 Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 12 identified descriptors 
(Table 4) associated with PPAR binding affinity of the compounds. 

Descriptors in decreasing order of significance in PLS analysis are O-060, nHDon, MAXDP, AMW, X2A, GATS2e, Me, 
nROR, GATS4v, MW, T(N..O) and nCconjR. Among these descriptors, O-060, nHDon, MAXDP, AMW, X2A and nROR are 
part of Equations discussed above and convey same inferences in PLS analysis. The positive contributions of 
constitutional class descriptors MW (molecular weight) and Me (mean atomic Sanderson electronegativity scaled on 
Carbon atom); and topological class descriptor T(N..O), representing the sum of topological distances between N and O 
atoms advocated that higher values of these are helpful in improving the activity profile. Whereas lower values of 
descriptors GATS4v (Geary autocorrelation of lag-4/ weighted by atomic van der Waals volumes), GATS2e (Geary 
autocorrelation of lag-2/ weighted by atomic Sanderson electronegativities) and number of exo-conjugated C(sp2) 
(descriptor nCconjR) would be supportive to enhance the activity. It is also observed that PLS model from the dataset 
devoid of 12 descriptors (Table 4) remained inferior in explaining the activity of the analogues. 

QSAR rationales, with the same test-set used earlier for the analysis of PPAR binding activity, have also been obtained 
for other reported activity profile pertaining to hPPARand hPPARtransactivation. A descriptor pool of 39 and 67 
relevant descriptors for hPPARand hPPARtransactivation, respectively, were subjected to CP-MLR analysis. CP-MLR 
resulted a total number of 08 models in two parameters sharing 9 descriptors for hPPARactivity. For the hPPAR 
activity 15 three parameters models sharing 18 descriptors were obtained. The shared descriptors along with their 
physical meaning, average regression coefficient and total incidences for both the analysis have been given in Table 2. 
The selected models emerged through CP-MLR are mentioned below.  

pEC50(hPPAR)= – 1.686(0.388)IC1 – 1.933(0.396)T(N..N) + 7.965  
n = 10, r = 0.945, s = 0.355, F = 29.412, q2LOO = 0.837, q2L3O = 0.847, r2Test= 0.610         (8) 

pEC50(hPPAR)= – 2.013(0.469)MAXDP – 2.690(0.426)IC1 + 8.450  
n = 10, r = 0.933, s = 0.391, F = 23.596, q2LOO = 0.740, q2L3O = 0.707, r2Test= 0.749         (9) 

pEC50(hPPAR)= – 2.340(0.422)AMW – 1.874(0.517)MAXDP + 7.881  
n = 10, r = 0.916, s = 0.435, F = 18.364, q2LOO = 0.643, q2L3O = 0.571, r2Test= 0.765       (10) 

pEC50(hPPAR)= – 1.976(0.518)T(N..N) – 1.546(0.540)MATS7m + 7.995  
n = 10, r = 0.905, s = 0.462, F = 15.876, q2LOO = 0.724, q2L3O = 0.700, r2Test= 0.617       (11) 

Newly appeared descriptors IC1 and T(N..N) are topological class descriptors whereas descriptor MATS7m belong to 
2D-autocorrelations (2D-AUTO) class. The 2D-AUTO descriptors, ATSke, GATSke and MATSke have their origin in 
autocorrelation of topological structure of Broto-Moreau, of Moran and of Geary, respectively. The computation of these 
descriptors involves the summation of different autocorrelation functions corresponding to the different fragment 
lengths and lead to different autocorrelation vectors corresponding to the lengths of the structural fragments. Also a 
weighting component in terms of a physicochemical property has been embedded in these descriptors. As a result, these 
descriptors address the topology of the structure or parts thereof in association with a selected physicochemical 
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property. In these descriptors’ nomenclature, the penultimate character, a number, indicates the number of 
consecutively connected edges considered in its computation and is called as the autocorrelation vector of lag k 
(corresponding to the number of edges in the unit fragment). The very last character of the descriptor’s nomenclature 
indicates the physicochemical property considered in the weighting component – m for atomic mass, e for atomic 
Sanderson electronegativity and p for atomic polarizability - for its computation. 

All the descriptors, participated in Eqs. (8) to (11), have shown negative correlation to activity as evinced from the signs 
of the correlation coefficients thus lower values of information content index of 1st order neighborhood symmetry 
(descriptor IC1), sum of topological distances between N..N (descriptor T(N..N)), maximal electrotopological positive 
variation (descriptor  MAXDP), average molecular weight (descriptor AMW) and Moran autocorrelation of lag-7/ 
weighted by atomic masses (descriptor MATS7m) would be beneficiary to the hPPARactivity. 

The derived statistical parameters models have revealed that these models are statistically significant. The values 
greater than 0.5 of indices q2LOO and q2L3O have accounted the internal robustness of models and the r2Test values greater 
than 0.5 are accountable for external validation. 

These models are able to estimate up to 89.36 percent of variance in observed activity of the compounds. These models 
were, therefore, used to calculate the activity profiles of all the compounds and are included in Table 5 for the sake of 
comparison with observed ones. A close agreement between them has been observed. 

Table 5 Observed and calculated transactivation activities of Tetrahydroquinoline analogues. 

Cpd. 

Transactivation pEC50(M)a 

hPPARα hPPARγ 

Obsd.b 
Calculated 

Obsd.b 
Calculated 

Eq.(8) Eq.(9) Eq.(10) Eq.(11) Eq.(12) Eq.(13) Eq.(14) Eq.(15) 

1 5.00 5.01 5.58 5.10 5.04 8.40 8.31 8.62 8.14 8.48 

2 6.38 6.71 6.44 5.98 6.91 7.43 7.34 7.57 7.71 7.23 

3 -c 7.81 6.19 5.28 7.76 6.82 7.35 6.75 6.87 7.17 

4 -c 6.73 6.19 6.33 7.32 6.71 6.56 6.44 6.55 6.74 

5 6.72 7.19 6.71 6.74 7.16 7.32 7.03 7.51 7.70 7.02 

6 7.52 7.60 7.35 6.86 7.01 7.72 7.44 7.58 7.76 7.32 

7d 7.54 7.60 7.35 6.86 7.01 7.85 7.44 7.58 7.76 7.32 

8d 7.92 6.91 7.11 7.39 6.70 7.96 7.45 7.49 7.69 7.54 

9 7.54 6.91 7.11 7.39 6.70 7.85 7.45 7.49 7.69 7.54 

10 6.71 6.91 7.11 7.39 6.70 7.19 7.45 7.49 7.69 7.54 

11d 6.94 6.91 7.11 7.39 6.70 8.11 7.45 7.49 7.69 7.54 

12 7.14 6.87 7.03 7.41 7.32 7.89 7.90 7.52 7.69 7.74 

13 7.47 7.30 7.67 7.20 7.47 8.15 8.34 7.85 7.66 8.52 

14d 8.05 7.04 7.28 7.51 7.63 8.12 7.98 7.85 7.68 7.88 

15 -c 6.51 6.48 6.93 6.54 -c 7.10 7.23 7.59 7.43 

16 6.00 5.92 5.44 6.14 6.08 6.90 7.23 6.87 6.69 6.71 

17 5.00 5.07 5.04 5.26 5.09 7.85 7.72 8.19 7.96 7.90 

18 -c 4.84 5.34 6.19 5.22 5.00 5.09 5.34 5.11 5.33 
aOn bTaken from ref. [22,23]; cInactive 
compound, not part of data set and dCompound included in test set.  

 
Considering the number of observation in the data set for the hPPAR transactivation profile, models with up to three 
descriptors were explored. Following are the selected three-descriptor models, obtained from CP-MLR, for the hPPAR 
transactivation.  

pEC50(hPPAR)= 2.386(0.312)MATS5v + 1.369(0.237)MATS8e + 0.827(0.241)nCt + 4.807  
n = 13, r = 0.950, s = 0.311, F = 28.279, q2LOO = 0.640, q2L3O = 0.713, r2Test= 0.545                                (12) 
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pEC50(hPPAR)= 1.089(0.346)HNar + 1.129(0.232)MATS8e + 1.363(0.213)C-008 + 5.156  
n = 13, r = 0.950, s = 0.313, F = 27.929, q2LOO = 0.736, q2L3O = 0.760, r2Test= 0.613                      (13) 

pEC50(hPPAR)= – 0.710(0.242)Me + 1.090(0.240)MATS8e + 1.595(0.215)C-008 + 5.808  
n = 13, r = 0.946, s = 0.325, F = 25.748, q2LOO = 0.785, q2L3O = 0.701, r2Test= 0.766                     (14) 

pEC50(hPPAR)= 2.482(0.329)MATS5v + 1.390(0.308)GATS6e  – 0.983(0.231)C-006 + 5.707  
n = 13, r = 0.946, s = 0.325, F = 25.723, q2LOO = 0.709, q2L3O = 0.808, r2Test= 0.560                     (15) 

In all above equations (12) to (15) the F-values remained significant at 99% level. The values, greater than 0.5, obtained 
for the indices q2LOO, q2L3O, and r2Test ascertained the internal robustness and external validation of the models. 

These models are capable to explain up to 90.40 percent of variance in observed activity of the compounds. The derived 
statistical parameters are in tune to statistical significance. The activity profiles of all the compounds calculated using 
these equations are in close agreement to the observed ones and the same are included in Table 5.  

2D-autocorrelations class descriptors MATS5v (Moran autocorrelation of lag-5/ weighted by atomic van der Waals  
volumes), MATS8e (Moran autocorrelation of lag-8/ weighted by atomic Sanderson electronegativities) and GATS6e 
(Geary autocorrelation of lag-6/ weighted by atomic Sanderson electronegativities) added positively to the inhibitory 
activity suggesting that a higher values of descriptors MATS5v, MATS8e and GATS6e would be helpful to augment the 
activity. Constitutional class descriptors Me (mean atomic Sanderson electronegativity scaled on Carbon atom) favors 
low value of mean atomic Sanderson electronegativity for elevated activity.  

Descriptor HNar, corresponds to Narumi harmonic index, is a topological class descriptor. The positive contribution of 
descriptor HNar suggested that a higher value of it would be supportive to the activity. The other participated 
descriptors are nCt (from the functional group class), and C-006 and C-008 (from the atom-centered fragments). 
Number of total tertiary C(sp3) (descriptor nCt) and CHR2X type atom centered fragment (descriptor C-008) correlated 
positively to the activity suggested that a higher value of these will augment the activity. On the other hand negative 
correlation of descriptor C-006 advocated that CH2RX type structural fragments would be detrimental to the activity.  

3.2. Applicability domain 

On analyzing the applicability domain (AD) in the Williams plot (Figure 3) of the model based on the whole dataset 
(Table 7), none of the compound has been identified as an obvious ‘outlier’ for the PPAR binding activity if the limit of 
normal values for the Y outliers (response outliers) was set as 3×(standard deviation) units.  

Table 7 Models derived for the whole data set (n = 15) for the PPARγ binding affinity in descriptors identified through 
CP-MLR. 

Model r s F q2LOO Eq. 

pKi = -1.523(0.412)MAXDP +2.483(0.378)nHDon + 6.229 0.930 0.457 38.897 0.808 (4a) 

pKi = 0.915(0.296)nROR + 3.123(0.401)nHDon + 4.780 0.916 0.499 31.601 0.739 (5a) 

pKi = 1.962(0.579)X2A – 2.374(0.386)O-060 + 6.938 0.904 0.534 26.829 0.745 (6a) 

pKi = 1.668(0.441)AMW – 2.457(0.363)O-060 + 6.894 0.914 0.505 30.802 0.727 (7a) 
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Figure 3 Williams plot for the training-set and test- set for binding affinity of PPAR for the compounds in Table 1. The 
horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents 
threshold leverage h* (= 0.6). 

Compounds 2 and 17 found to have leverage (h) values greater than the threshold leverage (h*) suggesting them as 
chemically influential compounds. For both the training-set and test-set, the suggested model matches the high quality 
parameters with good fitting power and the capability of assessing external data. Furthermore, all of the compounds 
were within the applicability domain of the proposed model and were evaluated correctly. 

4. Conclusion 

This study has provided a rational approach for the development of tetrahydroquinoline derivatives as PPARα/γ 

agonists. The descriptors identified in CP-MLR analysis for the PPARγ binding activity have highlighted the role of 

average molecular weight (AMW), maximal electrotopological positive variation (MAXDP), average connectivity index 
i.e. chi-2 (X2A) to explain the binding actions in addition to presence of donor atoms for H-bonds with N and O (nHDon), 
aliphatic ethers (nROR) and absence of Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X type fragments in a molecular structure (O-
060) have also shown prevalence to optimize the PPARγ binding activity of titled compounds. PLS analysis has further 
confirmed the dominance of the CP‐MLR identified descriptors and applicability domain analysis revealed that the 
suggested model for PPARγ binding activity matches the high quality parameters with good fitting power and the 
capability of assessing external data and all of the compounds was within the applicability domain of the proposed 
model and were evaluated correctly.  

Derived statistical significant models for hPPAR transactivation activity revealed that lower values of information 
content index of 1st order neighborhood symmetry (descriptor IC1), sum of topological distances between N..N 
(descriptor T(N..N)), maximal electrotopological positive variation (descriptor MAXDP), average molecular weight 
(descriptor AMW) and Moran autocorrelation of lag-7/ weighted by atomic masses (descriptor MATS7m) would be 
beneficiary to the hPPARactivity. Role of atomic van der Waals volumes and electronegativities to explain the hPPAR 
transactivation activity is evinced through participation of descriptors MATS5v, MATS8e, GATS6e and Me. Additionally 
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a higher value of Narumi harmonic index (HNar), number of total tertiary C(sp3) (descriptor nCt), presence of CHR2X 
type atom centered fragment (descriptor C-008) and absence of CH2RX type structural fragments (descriptor C-006) 

will augment the hPPAR transactivation activity. 
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