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Abstract 

The CDK8 and 7dF3 inhibition activity of naphthyridine and isoquinoline derivatives have been quantitatively analyzed 
in terms of Dragon descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models 
provided rationales to explain the inhibition activities of these congeners. The descriptors identified through CP-MLR 
analysis for the CDK8 inhibitory activity have highlighted the role of sum of the topological distances between N..N 
(T(N..N)), distance/detour ring index of order 6 (D/Dr06), aromatic ratio (ARR), number of double bonds (nDB), 
number of 6-membered rings (nR06), number of sulphur atoms (nS), number of unsubstituted sp2 hybridized aromatic 
carbon atoms (nCaH), number of aliphatic N hydrazines (nN-N), number of aromatic primary amines (nNH2Ph) and 
certain atom centered fragments such as R--CH--R (C-024), X--CR..X (C-034), H attached to C1(sp3)/C0(sp2) (H-047) 
and RCO-N</>N-X=X (N-072) to quantify the inhibitory actions. The highest eigen value n.2 of Burden matrix/weighted 
by atomic polarizabilites (BEHp2) and atomic Sanderson electronegativities weighted Geary autocorrelation of lag 8 
(descriptor GATS8e) have also shown prevalence to model the CDK8 inhibitory activity.  

PLS analysis has also corroborated the dominance of CP-MLR identified descriptors. Applicability domain analysis 
revealed that the suggested model matches the high quality parameters with good fitting power and the capability of 
assessing external data and all of the compounds was within the applicability domain of the proposed model and were 
evaluated correctly. The models obtained from the descriptor pool that was chosen for the CDK8 inhibitory activity is 
able to explain nearly 74% variance in the observed 7dF3 activities of titled compounds. 

Keywords: QSAR; CDK8 inhibitors; Combinatorial protocol in multiple linear regression (CP-MLR) analysis; Partial 
least square (PLS) analysis; Dragon descriptors; Naphthyridines; Isoquinolines 

1. Introduction

The pivotal role played by cyclin-dependent kinases (CDKs) in the regulation of cell progression and gene transcription 
puts these as promising therapeutic targets for various diseases [1]. In the recent decades intensive efforts have been 
made in search of novel and potent CDK inhibitors. The unique member of the CDK family, CDK8 that is a transcriptional 
CDK, is a component of the mediator complex. By participation in a myriad of signaling pathways CDK8 regulates the 
transcription of related genes in a context-specific way [2]. The implications of CDK8 in colorectal and gastric cancers 
as an oncogene, is due to the activation of WNT signaling [3-6]. Because of the association of CDK8 in the development 
and progression of cancers its selective inhibition has been regarded as a promising approach for cancer therapy. A 
variety of small molecule modulators of CDK8 have been recently reported and these include Sorafenib [7], Senexin A 
[8], Cortistatin A [9], 6-azabenzothiophene derivatives [10]. The optimization of a 3,4,5-trisubstituted pyridine series 
led to potent, selective and orally bioavailable dual CDK8/19 ligandsCCT251545 and CCT251921 [11-13]. Mallinger et 
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al has been reported a novel series of 2,8-disubstituted-1,6-naphthyridine- and 4,6-disubstituted-isoquinolines as dual 
CDK8/19 ligands by means of scaffold-hop approach [14]. 

The aim of present communication is to establish the quantitative relationships between the reported activities and 
molecular descriptors unfolding the substitutional changes in titled compounds. 

2. Material and methods 

2.1. Data-set 

For present work the reported fifty naphthyridines and isoquinolines have been considered as the data set [14]. The 
general structure of these compounds is represented in Figure 1 and structural variations are mentioned in Table 1.  

 

 
Figure 1 General structure of naphthyridine (X=N) and isoquinoline analogues 

These derivatives were evaluated for their inhibition of CDK8 and WNT signaling in luciferase reporter assay in HEK293 
7dF3 cells. Both the inhibition activities have also been reported in Table1 [14]. The inhibition activity, IC50, represents 
the concentration of a compound to achieve 50% inhibition of CDK8 and 7dF3. The same is expressed as pIC50 on a 
molar basis and considered as the dependent variable for the present quantitative analysis. In the dataset, the initial 
assessment of activity with all descriptors has suggested the compound 23 as potential outlier. An outlier to a QSAR can 
indicate the limits of applicability of QSAR models. This outlier is not part of the data set. The data set was sub-divided 
into training set to develop models and test set to validate the models externally. The test set compounds which were 
selected using an in-house written randomization program, are also mentioned in Table 1. 

Table 1 Structural variations and observed CDK8 and 7dF3 inhibition activities of naphthyridine and isoquinoline 
derivatives 
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aReference [14], IC50 represents the concentration of a compound to bring out 50% inhibition of CDK8 and 7dF3; bCompound included in test set; 
c“Outlier” compound not included in data set.  

2.2. Molecular descriptors  

The structures of the compounds (Table 1), under study, have been drawn in 2D ChemDraw [15] and were converted 
into 3D objects using the default conversion procedure implemented in the CS Chem3D Ultra. The generated 3D-
structures of the compounds were subjected to energy minimization in the MOPAC module, using the AM1 procedure 
for closed shell systems, implemented in the CS Chem3D Ultra. This will ensure a well defined conformer relationship 
across the compounds of the study. All these energy minimized structures of respective compounds have been ported 
to DRAGON software [16] for computing the descriptors corresponding to 0D-, 1D-, and 2D-classes.  

2.3. Development and validation of model 

The combinatorial protocol in multiple linear regression (CP-MLR) [17-21] and partial least squares (PLS) [22-24] 
procedures have been used in the present work for developing QSAR models. The CP-MLR is a “filter”-based variable 
selection procedure, which employs a combinatorial strategy with MLR to result in selected subset regressions for the 
extraction of diverse structure–activity models, each having unique combination of descriptors from the generated 
dataset of the compounds under study. The embedded filters make the variable selection process efficient and lead to 
unique solution. Fear of “chance correlations” exists where large descriptor pools are used in multilinear QSAR/QSPR 
studies [25,26]. Furthermore, in order to discover any chance correlations associated with the models recognized in CP-
MLR, each cross-validated model has been put to a randomization test [27,28] by repeated randomization of the activity 
to ascertain the chance correlations, if any, associated with them. For this, every model has been subjected to 100 
simulation runs with scrambled activity. The scrambled activity models with regression statistics better than or equal 
to that of the original activity model have been counted, to express the percent chance correlation of the model under 
scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within the study domain. For each 
model, derived by involving n data points, a number of statistical parameters such as r (the multiple correlation 
coefficient), s (the standard deviation), F (the F ratio between the variances of calculated and observed activities), and 
Q2LOO (the cross-validated index from leave-one-out procedure) have been obtained to access its overall statistical 
significance. In case of internal validation, Q2LOO is used as a criterion of both robustness and predictive ability of the 
model. A value greater than 0.5 of Q2 index suggests a statistically significant model. The predictive power of derived 
model is based on test set compounds. The model obtained from training set has a reliable predictive power if the value 
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of the r2Test (the squared correlation coefficient between the observed and predicted values of compounds from test set) 
is greater than 0.5.  

2.4. Applicability Domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model is valid only within 
its training domain and new compounds must be assessed as belonging to the domain before the model is applied. The 
applicability domain is assessed by the leverage values for each compound [29]. The Williams plot (the plot of 
standardized residuals versus leverage values, h) can then be used for an immediate and simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
applicability domain is established inside a squared area within ± x (s.d.) and a leverage threshold h*. The threshold h* 
is generally fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number of model parameters) 
whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a high leverage value (h > h*). On the 
other hand, when the leverage value of a compound is lower than the threshold value, the probability of accordance 
between predicted and observed values is as high as that for the training-set compounds. 

3. Results and discussion 

3.1. QSAR results 

For the compounds in Table 1, a total number of 506 descriptors belonging to 0D- to 2D- classes of DRAGON have been 
computed. Prior to model development procedure, all those descriptors that are inter-correlated beyond 0.90 and 
showing a correlation of less than 0.1 with the biological endpoints (descriptor versus activity, r < 0.1) were excluded. 
This procedure has reduced the total descriptors from 506 to 107 as relevant ones to explain the biological actions of 
titled compounds and these were subjected to CP-MLR analysis with default “filters” set in it. The descriptors have been 
scaled between the intervals 0 to 1 [30] to ensure that a descriptor will not dominate simply because it has larger or 
smaller pre-scaled value compared to the other descriptors. In this way, the scaled descriptors would have equal 
potential to influence the QSAR models.  

In multi-descriptor class environment, exploring for best model equation(s) along the descriptor class provides an 
opportunity to unravel the phenomenon under investigation. In other words, the concepts embedded in the descriptor 
classes relate the biological actions revealed by the compounds.  

The 49 compounds were divided into training-set and test-set. Fourteen compounds (nearly 30% of total population) 
have been selected for test-set. The identified test-set was then used for external validation of models derived from 
remaining thirty five compounds in the training-set. The squared correlation coefficient between the observed and 
predicted values of compounds from test-set, r2Test, was calculated to explain the fraction of explained variance in the 
test-set which is not part of regression/model derivation. It is a measure of goodness of the derived model equation. A 
high r2Test value is always good. But considering the stringency of test-set procedures, often r2Test values in the range of 
0.5 to 0.6 are regarded as logical models. Following the strategy to explore only predictive models, CP-MLR resulted 
into 08, 44 and 18 models in two, three and four descriptors, respectively. The generated models in two and three 
descriptors, all having r2Test<0.5, for the CDK8 inhibitory activity. The selected models are mentioned in Table 2.  

Table 2 Highest significant models in two, three and four parameters derived for training set through CP-MLR for CDK8 
inhibitory activity 

Model R S F Q2LOO r2Test  Eq. 

pIC50 = 7.644 -1.799(0.359)T(N..N)  

+1.855(0.347)N-072  

0.777 0.509 24.418 0.506 0.307 (1) 

pIC50 = 5.522 +6.029(0.890)nDB 

-3.069(0.698)BEHp2 +2.903(0.681)nCaH 

0.813 0.479 20.165 0.534 0.474 (2) 

pIC50 = 4.486 +7.193(0.768)nDB -2.779(0.424)nS 

 +4.554(0.750)nCaH -1.565(0.354)C-024 

0.883 0.391 26.793 0.692 0.582 (3) 
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The signs of the regression coefficients have indicated the direction of influence of explanatory variables in above 
models. The positive regression coefficient associated to a descriptor will augment the activity profile of a compound 
while the negative coefficient will cause detrimental effect to it. 

In above model Eqs., (1-3), the descriptor T(N..N) is topological class descriptor. The other participating descriptors are 
BEHp2 (BCUT class descriptor), nDB and nS (constitution class descriptors), N-072 and C-024 (atom centered 
fragments) and nCaH (functional group). The positive sign of regression coefficients of descriptors nDB (number of 
double bonds), nCaH (number of unsubstituted sp2 hybridized aromatic carbon atoms) and presence of RCO-N</>N-
X=X type atom centered fragment (descriptor N-072) in a molecular structure suggested that a higher value of these 
descriptors would be beneficial to augment the CDK8 inhibitory activity. On the other hand, a lower value of descriptors 
T(N..N) (sum of the topological distances between N..N), nS (number of sulfur atoms), C-024 (R--CH--R) and BEHp2 
(highest eigen value n.2 of Burden matrix/weighted by atomic polarizabilites) would be supportive to the CDK8 
inhibition.  

Considering the number of observation in the dataset, models with up to five descriptors were explored. It has resulted 
in 18 five-parameter models with test set r2> 0.50. These models (with 107 descriptors) were identified in CP-MLR by 
successively incrementing the filter-3 with increasing number of descriptors (per equation). For this, the optimum r-
bar value of the preceding level model (=0.867) has been used as the new threshold of filter-3 for the next generation. 
These models have shared 16 descriptors among them. All these 16 descriptors along with their brief meaning, average 
regression coefficients, and total incidence are listed in Table 3, which will serve as a measure of their estimate across 
these models.  

Table 3 Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in 
modeling the CDK8 inhibitory activities 

Descriptor class Descriptor (physical meaning), avg reg coeff (incidence)  

Constitutional nDB (number of double bonds), 4.681(17); nS (number of Sulfur atoms),  

-2.501(8); nR06 (number of 6-membered rings), -0.635(3) 

Topological IVDE (mean information content vertex degree equality), -1.454(1); SIC3 (structural 
information content of 3rd order neighborhood symmetry), 1.256(1); D/Dr06 
(distance/detour ring index of order 6), -0.920(6)  

BCUT BEHp2 (atomic polarizabilities weighted lowest eigenvalue n.2 of Burden matrix), -2.547(2) 

2D autocorrelations 

 
GATS8e (atomic Sanderson electronegativity weighted Geary autocorrelation oflag 8), 
0.888(3)  

Functional groups nCaH (number of unsubstituted sp2 hybridized aromatic carbon atoms), 3.265(17); 
nNH2Ph(number of aromatic primary amines), -0.838(1); nN-N (number of aliphatic N 
hydrazines), -1.016(8) 

Atom centered 
fragments  

C-024 (R--CH--R), -1.351(10); C-034 (X--CR..X), -1.150(1); H-047 (H attached to 
C1(sp3)/C0(sp2)), -0.660(2); N-072 (RCO-N</>N-X=X.)), 1.904(9) 

Empirical ARR(aromatic ratio), 1.223(1)  
aThe descriptors are identified from the four parameter models for activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-
3 as 0.867 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 35 compounds. bThe average regression coefficient of the descriptor corresponding to all 

models and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 
models.  

Following are the selected five-descriptor models for the CDK8 inhibitory activities emerged through CP-MLR. 

pIC50 = 4.803 +7.016(0.654)nDB –2.831(0.362)nS -0.595(0.170)nR06 +4.403(0.641)nCaH -1.698(0.304)C-024 

n = 35, r = 0.919, s = 0.333, F = 31.911, Q2LOO = 0.750, Q2L5O = 0.757, r2Test = 0.636                                                 ……………. (4) 

pIC50 = 4.792 +2.757(0.346)nDB +1.769(0.401)nCaH -1.211(0.284)nN-N +2.079(0.327)N-072 +1.222(0.259)ARR 

n = 35, r = 0.912, s = 0.348, F = 28.838, Q2LOO = 0.746, Q2L5O = 0.740, r2Test = 0.534                                                 ……………. (5) 
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pIC50 = 4.664 +6.570(0.728)nDB –2.466(0.399)nS +4.464(0.677)nCaH -0.817(0.292)nN-N -1.447(0.322)C-024 

n = 35, r = 0.909, s = 0.353, F = 27.869, Q2LOO = 0.749, Q2L5O = 0.762, r2Test = 0.606                                                 ……………. (6) 

pIC50 = 5.965 +5.372(0.693)nDB –0.730(0.184)nR06 -2.965(0.546)BEHp2 +2.692(0.512)nCaH -1.019(0.294)nN-N 

n = 35, r = 0.907, s = 0.358, F = 26.969, Q2LOO = 0.714, Q2L5O = 0.731, r2Test = 0.515                                                 ……………. (7) 

These models have accounted for nearly 84% variance in the observed activities. In the randomization study (100 
simulations per model), none of the identified models has shown any chance correlation. The values greater than 0.5 of 
Q2 index is in accordance to a reasonable robust QSAR model. The pIC50 values of training set compounds calculated 
using Eqs. (4) to (7) have been included in Table 4. The models (4) to (7) are validated with an external test set of 14 
compounds listed in Table 4. The predictions of the test set compounds based on external validation are found to be 
satisfactory as reflected in the test set r2 (r2Test) values and the same is reported in Table 4. The plot showing goodness 
of fit between observed and calculated activities for the training and test set compounds is given in Figure 2. 

Table 4 Observed and calculated CDK8 and 7dF3 inhibition activities of naphthyridine and isoquinoline derivatives 

Cpd. CDK8 Inhibition pIC50(M)a  7dF3 InhibitionpIC50(M)a 

Obs. Calculated  Obs. Calculated 

Eq.(4) Eq.(5) Eq.(6) Eq.(7) PLS Eq.(8) Eq.(9) Eq.(10) Eq.(11) 

1 8.44 8.38 8.16 8.38 8.13 8.43 9.70 8.55 8.32 8.47 8.27 

2b 8.27 7.88 7.90 7.60 8.20 7.88 8.47 8.30 8.00 8.00 8.58 

3 8.16 7.88 7.90 7.60 8.18 8.18 8.34 8.27 8.04 8.00 8.62 

4 9.05 8.99 8.69 8.77 8.37 8.76 8.77 8.67 8.16 8.00 8.57 

5 8.28 8.99 8.83 8.77 8.63 8.86 7.95 8.52 8.40 8.00 7.82 

6 8.82 8.49 8.75 8.36 8.42 8.53 9.30 8.13 8.65 8.47 8.63 

7 8.33 8.49 7.71 8.36 8.45 7.81 6.23 7.01 7.05 7.14 7.51 

8 6.41 6.16 6.75 6.17 6.97 7.07 6.40 6.67 6.39 6.90 6.47 

9b 8.44 8.49 8.13 8.36 8.30 8.29 8.70 8.27 8.26 8.47 7.89 

10b 8.28 8.49 7.86 8.36 8.28 8.25 8.60 8.30 8.00 8.47 7.54 

11b 7.59 8.49 7.86 8.36 8.30 8.29 7.90 8.27 8.10 8.47 7.92 

12 8.46 8.49 7.99 8.36 8.30 8.26 8.00 8.27 7.98 8.47 7.77 

13 7.89 7.90 7.86 8.36 7.60 7.65 7.56 7.27 7.67 7.38 7.54 

14 7.60 7.90 7.86 8.36 7.60 7.65 7.19 7.27 7.27 7.38 6.87 

15b 8.74 8.49 8.37 8.36 8.87 8.39 7.76 7.79 7.80 8.23 7.53 

16b 8.62 8.49 7.94 8.36 8.76 8.34 7.52 7.93 7.76 8.23 7.76 

17 9.00 8.49 8.98 8.36 8.79 9.15 8.38 8.98 9.22 9.56 8.83 

18b 6.09 6.16 5.98 6.17 6.94 6.84 5.85 6.87 5.92 6.67 5.66 

19 5.92 5.56 5.98 6.17 6.30 6.40 5.59 5.84 5.53 5.58 5.66 

20 6.33 6.77 6.12 6.12 6.16 6.16 5.71 5.77 5.79 5.81 5.94 

21 5.91 6.77 6.12 6.12 6.08 6.13 5.91 5.85 5.83 5.81 5.68 

22 7.80 7.62 7.49 7.66 7.47 7.40 7.35 7.10 7.39 7.61 7.24 

23c -c -c -c -c -c -c -c -c -c -c -c 
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24b 8.35 8.38 8.87 8.38 8.18 8.56 9.22 8.41 8.68 8.47 8.92 

25 8.68 8.38 8.42 8.38 8.15 8.53 8.96 8.50 8.53 8.47 8.17 

26b 7.96 8.38 8.16 8.38 8.10 8.31 7.80 8.55 8.22 8.47 7.89 

27 8.21 8.38 8.16 8.38 8.13 8.43 7.71 8.55 8.32 8.47 8.27 

28b 8.31 8.38 8.66 8.38 8.67 8.56 7.47 8.04 8.02 8.23 7.83 

29 7.47 7.51 7.79 7.68 7.26 7.58 7.80 7.36 7.62 7.61 7.58 

30b 8.19 7.51 7.63 7.68 7.18 7.36 8.14 7.44 7.30 7.61 7.37 

31 8.34 8.38 8.23 8.38 8.61 8.56 8.33 8.13 7.81 8.23 8.06 

32 8.17 7.89 7.98 8.11 8.58 8.07 7.06 7.41 7.23 7.14 6.99 

33 8.25 7.89 8.54 8.11 8.95 8.31 7.37 7.50 7.99 7.14 7.21 

34 7.00 7.17 7.45 7.62 7.10 7.06 6.25 6.68 6.73 6.70 6.57 

35 7.28 7.17 7.45 7.62 7.10 7.01 7.14 6.68 7.22 6.70 7.38 

36b 8.72 7.76 7.45 7.62 7.77 7.59 8.14 7.68 7.54 7.79 7.38 

37 7.68 7.76 7.70 7.62 7.77 7.73 7.97 7.68 7.78 7.79 7.70 

38 7.92 7.76 7.34 7.62 7.74 7.58 8.09 7.71 7.58 7.79 7.82 

39 7.77 7.76 7.45 7.62 7.77 7.53 8.24 7.68 7.65 7.79 7.76 

40 7.43 7.76 7.45 7.62 7.77 7.54 8.01 7.71 7.70 7.79 7.76 

41b 7.55 7.76 7.57 7.62 7.80 7.70 7.45 7.65 7.51 7.79 7.59 

42 6.80 6.89 6.88 6.92 6.85 6.56 7.06 6.57 6.49 6.93 6.67 

43 7.44 7.65 7.99 7.64 7.62 7.94 7.15 7.93 8.04 7.79 8.10 

44 7.92 7.65 7.75 7.64 7.62 7.68 7.68 7.96 7.80 7.79 7.78 

45 7.36 7.65 7.64 7.64 7.62 7.64 7.64 7.99 7.84 7.79 8.22 

46 7.92 7.65 7.75 7.64 7.62 7.68 7.75 7.96 7.91 7.79 8.16 

47 7.48 7.65 7.75 7.64 7.62 7.67 7.69 7.96 7.96 7.79 8.16 

48 7.54 7.65 8.21 7.64 8.16 7.55 7.12 7.42 7.51 7.56 7.66 

49 8.04 7.65 7.99 7.64 7.65 8.02 8.05 7.91 8.07 7.79 8.03 

50b 7.70 7.65 7.81 7.64 8.10 7.56 7.62 7.54 7.37 7.56 7.95 
aIC50 on molar basis, taken from reference [14]; bCompound included in test set; c“Outlier” compound not included in data set.  

.  



World Journal of Biology Pharmacy and Health Sciences, 2022, 12(03), 384–400 

394 

  

  

 

Figure 2 Plot of observed versus caculated pIC50 values for training- and test-set compounds for CDK8 inhibition 

The newly appeared descriptors in above models are nR06 (constitutional class), ARR (empirical class) and nN-N 
(functional group class). The descriptor ARR has shown positive correlation to the activity whereas descriptors nR06 
and nN-N have correlated negatively to the activity. The signs of regression coefficients advocated that higher value of 
aromatic ratio (descriptor ARR) and lesser number of 6-membered rings in a molecular structure (descriptor nR06) 
and number of aliphatic N hydrazines (descriptor nN-N) would be helpful to augment the CDK8 inhibitory activity. 

A partial least square (PLS) analysis has been carried out on these 16 CP-MLR identified descriptors, mentioned in Table 
3, to facilitate the development of a “single window” structure–activity model. For the purpose of PLS, the descriptors 
have been autoscaled (zero mean and unit SD) to give each one of them equal weight in the analysis. In the PLS cross-
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validation, four components are found to be the optimum for these 16 descriptors and they explained 86.86% variance 
in the activity. The MLR-like PLS coefficients of these 16 descriptors are given in Table 5. 

Table 5 PLS and MLR-like PLS models from the 16 descriptors of five parameter CP-MLR models for CDK8 inhibitory 
activities 

A: PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 0.281(0.024) 

Component-2 0.285(0.038) 

Component-3 0.101(0.029) 

Component-4 0.107(0.040) 

Constant 7.745 

B: MLR-like PLS equation 

S. 
No. 

Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order  
S. 
No. 

Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order  

1 nDB 0.341 0.136 3 9 nCaH 0.152 0.061 7 

2 nS -0.033 -0.013 12 10 nNH2Ph -0.473 -0.189 2 

3 nR06 -0.173 -0.069 6 11 nN-N -0.211 -0.084 4 

4 IVDE 0.003 0.001 16 12 C-024 0.030 0.012 14 

5 SIC3 -0.027 -0.011 15 13 C-034 -0.126 -0.050 8 

6 D/Dr06 -0.065 -0.026 10 14 H-047 -0.081 -0.032 9 

7 BEHp2 0.032 0.013 13 15 N-072 0.532 0.213 1 

8 GATS8e 0.186 0.074 5 16 ARR -0.037 -0.015 11 

Constant = 6.800 

C: PLS regression statistics Values  

n 35 

r 0.932 

s 0.302 

F 49.877 

Q2LOO 0.800 

Q2L5O 0.799 

r2Test 0.513 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original values;cf.c. 
is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the autoscaled (zero mean and 
unit s.d.) data. 

For the sake of comparison, the plot showing goodness of fit between observed and calculated activities (through PLS 
analysis) for the training and test set compounds is also given in Figure 2. Figure 3 shows a plot of the fraction 
contribution of normalized regression coefficients of these descriptors to the activity.  
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Figure 3 Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 16 CP-MLR identified 
descriptors (Table 3) associated with CDK8 inhibitory activity of naphthyridine and isoquinoline derivatives 

The PLS analysis has suggested N-072 as the most determining descriptor for modeling the activity of the compounds 
(descriptor S. No. 15 in Table 5; Figure 3). The other nine descriptors in decreasing order of significance are nNH2Ph, 
nDB, nN-N, GATS8e, nR06, nCaH, C-034, H-047 and D/Dr06. The descriptors nDB, nN-N, nR06 and nCaH are part of Eqs. 
(1) to (7) and convey same inference in the PLS model as well. The topological class descriptor D/Dr06, the 
distance/detour ring index of order 6, advocates that a lower value of it would be beneficiary to the activity. The negative 
influence of descriptors, nNH2Ph (number of aromatic primary amines), C-034 (X--CR..X) and H-047 (H attached to 
C1(sp3)/C0(sp2)) recommended absence of such functionality or fragments in a compound for improved activity. The 
positive regression coefficient of atomic Sanderson electronegativities weighted Geary autocorrelation of lag 8 
(descriptor GATS8e), advocates that a higher positive value of it is incremental to the activity. It is also observed that 
PLS model from the dataset devoid of CP-MLR identified 16 descriptors (Table 3) is inferior in explaining the activity of 
the analogues. 

CP-MLR analysis has also been carried out for another reported inhibition activity 7dF3 using same descriptor pool and 
test set. Following are the selected five-descriptor models for the 7dF3 inhibitory activities emerged through CP-MLR.  

pIC50 = 6.673 -0.973(0.266)nR06 +0.993(0.429)BEHe1 -0.759(0.217)nNH2Ph -1.417(0.415)nN-N  

+2.166(0.398)N-072 

n = 35, r = 0.860, s = 0.526, F = 16.499, Q2LOO = 0.633, Q2L5O = 0.580, r2Test = 0.587                                                        ………..(8) 

pIC50 = 4.942 -1.125(0.396)T(N..N) +2.077(0.529)BEHm3 –1.252(0.459)nN-N +3.751(0.538)N-072  

+2.009(0.494)ARR 

n = 35, r = 0.859, s = 0.527, F = 16.386, Q2LOO = 0.615, Q2L5O = 0.581, r2Test = 0.711                                                       ……….. (9) 

pIC50 = 6.669 +0.937(0.436)nBM -1.092(0.259)nR06 –0.673(0.206)nNH2Ph -1.797(0.460)nN-N  

+2.659(0.443)N-072 

n = 35, r = 0.856, s = 0.531, F = 16.025, Q2LOO = 0.615, Q2L5O = 0.600, r2Test = 0.567                                                      ………..(10) 

pIC50 = 5.023 -1.764(0.423)T(N..N) +2.151(0.596)GGI2 -0.996(0.461)nN-N +3.189(0.506)N-072  

+2.203(0.558)ARR 

n = 35, r = 0.850, s = 0.542, F = 15.200, Q2LOO = 0.619, Q2L5O = 0.581, r2Test = 0.639                                                      ………..(11) 
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Except the descriptors BEHe1, BEHm3, nBM and GGI2, all the descriptors participated in models (8) to (11) are part of 
earlier discussed models (1) to (7) and convey same inference. It is evinced from the models mentioned above that the 
descriptors BEHe1, BEHm3, nBM and GGI2 contributed positively to the activity. Thus a higher value of descriptors 
BEHe1 (atomic Sanderson electronegativities weighted highest eigenvalue n.1 of Burden matrix), BEHm3 (atomic 
masses weighted highest eigenvalue n.3 of Burden matrix), nBM (number of multiple bonds) and GGI2 (Galvez 
topological charge index of 2nd order) will be supportive to enhance the 7dF3 inhibition activity.  

These models have accounted for nearly 74% variance in the observed activities. The values greater than 0.5 of Q2 index 
is in accordance to a reasonable robust QSAR model. The pIC50 values of training set compounds calculated using Eqs. 
(8) to (11) have been included in Table 4. The models (8) to (11) are validated with an external test set of 5 compounds 
listed in Table 4. The predictions of the test set compounds based on external validation are found to be satisfactory as 
reflected in the test set r2 (r2Test) values and the same is reported in Table 4. The plot showing goodness of fit between 
observed and calculated activities for the training and test set compounds is given in Figure 4. 

  

              
 

Figure 4 Plot of observed versus caculated pIC50 values for training- and test-set compounds for 7dF3 inhibition 

3.2. Applicability domain 

On analyzing the applicability domain (AD) for the CDK8 inhibitory actions in the Williams plot (Figure 5) of the model 
based on the whole data set (Table 5), No any compound has been identified as an obvious ‘outlier’ for the CDK8 
inhibitory activity if the limit of normal values for the Y outliers (response outliers) was set as 2.5×(standard deviation) 
units. None of the compound was found to have leverage (h) values greater than the threshold leverage (h*). For both 
the training-set and test-set, the suggested model matches the high quality parameters with good fitting power and the 
capability of assessing external data. Furthermore, all of the compounds were within the applicability domain of the 
proposed model and were evaluated correctly. 
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Table 5 Models derived for the whole data set (n = 49) in descriptors identified through CP-MLR for CDK8 inhibitory 
actions 

Model r s F Q2LOO Eq. 

pIC50 = 5.009 +6.652(0.591)nDB -2.675(0.341)nS  

-0.626(0.180)nR06 +4.212(0.582)nCaH-1.688(0.289)C-024 
0.889 0.369 32.519 0.719 (4a) 

pIC50 = 5.149 +2.490(0.359)nDB +1.483(0.376)nCaH 

-1.264(0.313)nN-N +1.969(0.318)N-072 +1.148(0.241)ARR 
0.872 0.395 27.415 0.690 (5a) 

pIC50 = 4.905 +6.316(0.644)nDB -2.404(0.369)nS +4.296(0.607)nCaH  

-0.846(0.308)nN-N-1.518(0.304)C-024 
0.878 0.386 29.111 0.708 (6a) 

pIC50 = 5.914 +5.055(0.630)nDB -0.682(0.198)nR06 -2.569(0.474)BEHp2 
+2.678(0.484)nCaH -1.099(0.321)nN-N  

0.863 0.407 25.206 0.648 (7a) 

 

  

  

Figure 5 Williams plot for the training-set and test-set for CDK8 inhibition activity of compounds in Table 1. The 
horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (=0.514) 

4. Conclusion 

The CDK8 and 7dF3 inhibition activity of naphthyridine and isoquinoline derivatives have been quantitatively analyzed 
in terms of Dragon descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models 
provided rationales to explain the inhibition activities of these congeners. The descriptors identified through CP-MLR 
analysis for the CDK8 inhibitory activity have highlighted the role of sum of the topological distances between N..N 
(T(N..N)), distance/detour ring index of order 6 (D/Dr06), aromatic ratio (ARR), number of double bonds (nDB), 
number of 6-membered rings (nR06), number of sulphur atoms (nS), number of unsubstituted sp2 hybridized aromatic 
carbon atoms (nCaH), number of aliphatic N hydrazines (nN-N), number of aromatic primary amines(nNH2Ph) and 
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certain atom centered fragments such as R--CH--R (C-024),X--CR..X (C-034), H attached to C1(sp3)/C0(sp2) (H-047) 
andRCO-N</>N-X=X (N-072) to quantify the inhibitory actions. The highest eigen value n.2 of Burden matrix/weighted 
by atomic polarizabilites (BEHp2) and atomic Sanderson electronegativities weighted Geary autocorrelation of lag 8 
(descriptor GATS8e) have also shown prevalence to model the CDK8 inhibitory activity.PLS analysis has also 
corroborated the dominance of CP-MLR identified descriptors. Applicability domain analysis revealed that the 
suggested model matches the high quality parameters with good fitting power and the capability of assessing external 
data and all of the compounds was within the applicability domain of the proposed model and were evaluated correctly. 
The models obtained from the descriptor pool that was chosen for the CDK8 inhibitory activity is able to explain nearly 
74% variance in the observed 7dF3 activities of titled compounds. 
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