

eISSN: 2582-5542 Cross Ref DOI: 10.30574/wjbphs Journal homepage: https://wjbphs.com/

WIRPHS	#55N-2582-55
W	JBPHS
World Journal of Biology Pharmacy and Health Sciences	
	World Journal Series INDIA

(RESEARCH ARTICLE)

Check for updates

Medicinal plants used by Khondu tribes of Dumbriguda Mandal, Alluri Sitaramaraju district, Andhra Pradesh, India

Prabhakara Rao¹, M. Jelani Bhasha¹, J. Prema Kumari¹ and S. B. Padal^{2,*}

¹ Department of Botany, St' Ann's Womens Degree College, Visakhapatnam, Andhra Pradesh, India. ² Department of Botany, Andhra University, Visakhapatnam-530003, A.P., India.

World Journal of Biology Pharmacy and Health Sciences, 2023, 14(03), 171–176

Publication history: Received on 25 April 2023; revised on 10 June 2023; accepted on 13 June 2023

Article DOI: https://doi.org/10.30574/wjbphs.2023.14.3.0240

Abstract

We conducted an ethnomedical survey among Khondu tribal residents living in Dumbriguda Mandal, Alluri Sitaramaraju district, Andhra Pradesh. According to the ethnomedicinal survey, a total of 78 species of plants belonging to 73 genera and 45 families have been identified. Various traditional healers, tribal doctors, and old women of the tribal society were interviewed for this research. In the present study, 78 species were used to treat 37 different ailments/diseases, either individually or in combination. In the study, plants were used in unusual ways by the tribal people, demonstrating the revival of interest in traditional medicine.

Keywords: Medicinal plants; Khondu tribes; Dumbriguda Mandal; Alluri Sitaramaraju District

1. Introduction

Indigenous herbal treatment is a part of the culture and the dominant mode of therapy in most developing countries. The World Health Organization has estimated that over 80% of the global population relies chiefly on traditional medicine [1]. It was officially recognized that 2500 plant species have medicinal value while over 6000 plants are estimated to be explored in traditional, folk and herbal medicine [2]. Ethnobotanical research can provide a wealth of information regarding both past and present relationships between plants and traditional societies. The ethnobotanical investigation has led to the documentation of a large number of wild plants used by tribes for meeting their multifarious requirements [3]. Andhra Pradesh State is ethnobotanically well-explored; most of the work done was during 1985-2002. Hemadri [4] wrote a paper on the procurement of raw drugs in Andhra Pradesh. Rao & Hamadri [5] published the book on Andhra Pradesh Mandumokkalu (The Medicinal Plants of Andhra Pradesh). Later, Hemadri wrote two books in Telugu, namely, Andhra Pradesh lo Vanamulikalu [6] and Shastravettalanu Akarshinstunna Girijana Vaidyam [7]. Rao & Prasad [8] enlisted the ethnomedicines from the tribes of Andhra Pradesh while R.V. Reddy et al. [9] studied the ethnobotany of less-known tuber-yielding plants of Andhra Pradesh. Krishnamurthy [10] published a paper on the tribal people of Rampa and Gudem agency of Godavari lower Division, East Godavari district. Banerjee [11] & Gupta et al. [12] has reported the ethnobotany of Araku Valley in Visakhapatnam district. The objectives of the present research are the collection, identification and documentation of the plants used by the Khondu tribal community and extensive exploration studies in the area to record first-hand information from the Khondu tribal practitioners.

* Corresponding author: S. B. Padal

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

2. Material and methods

2.1. Study area

The study area of Dumbriguda is one of the Mandal of Alluri Sitaramraju District. Alluri District is one of the North Eastern Coastal districts of Andhra Pradesh and it lies between 17° - 15' and 18° -32' in Northern latitude and 18° - 54' and 83° - 30' in Eastern longitude. It is bounded on the North partly by neighboring districts known as Vizianagaram and the Orissa State, on the South by East Godavari District, on the West by Orissa State, and on the East by the Bay of Bengal. Dumbriguda is a mandal headquarter which consists of 22 Panchayats and 87 revenue villages. The total population of the area is 44,878 among them 93.43% are tribal communities. It is the first attempt on conducting an exploratory study towards understanding the traditional food system of tribal communities in this region, however, earlier workers had done some similar studies on uncultivated food plants in several other tribal areas in the country and within the state.

2.2. Methodology

Intensive field surveys were carried out during **2021–2022**, covering all the seasons. Collected specimens were made into a herbarium as per the methods suggested by Jain & Rao [13]. The representative taxa were collected and identified with the help of floras [14-16] and made into a herbarium. The voucher specimens were housed in the Botany Department Herbarium (BDH), Department of Botany, Andhra University, Visakhapatnam.

3. Results and discussion

During exploration trips, medicinally useful information have been recorded on 78 plant species belonging to 73 genera and 45 families were recorded which are exploited by the Khondu tribals for their healthcare (Figure 1). The family-wise analysis of ethnomedicinal data revealed that of the 45 families, the dominant ones are Asteraceae represented by 5 species followed by Liliaceae, Fabaceae, Euphorbiaceae, and Apocynaceae with 4 species, Solanaceae, Caesalpiniaceae, Lythraceae, Asclepiadaceae, Araceae, Anacardiaceae and Myrtaceae with 3 species each, Loganiaceae, Lamiaceae, Arecaceae, and Acanthaceae with 2 species each remaining families were single species.

From the present study, it is evident that the local people used trees (31), followed by herbs (28), shrubs (11), climbers (7) and parasites (1), (Figure 2, Table. 1). Depending upon the plant part used for medicinal purposes root and stem bark constitutes the highest percentage (15) followed by leaf (13), seed (6), Tuber and root bark (4), whole plant, stem, rhizome, fruit and flower (3) and remaining were single. Intensive surveys and repeated personal interviews in different pockets resulted in coming across 37 diseases in the area.

Figure 1 Floristic analysis of EMPs

Figure 2 Habit-wise analysis of EMPs

A total of 78 species reported in the present study are used in curing 37 different ailments abortion (5), acidity (1), anemia (2), anasarca (1), anthelmintic (3), antifertility (2), Antiseptic (1), asthma (11), blood pressure (1), boils (3), body pain (1), bone fracture (2), Bronchitis (1), burns (1), chest pain (1), conjunctivitis (3), cough (1), cuts (2), dandruff (3), diarrhea (5), dysentery (2), dyspepsia (4), fever (2) fractures (4), gonorrhea (3), Headache (2), Hydrocele (2), Jaundice (5), Leucorrhoea (4), Stomachache (1) and Swellings(1). Similar work carried out by Padal [17] Reported from the Paderu Division about 455 plant species of 354 genera belonging to 115 families. Out of the 455 species, 448 species are Angiosperms followed by 6 species of Pteridophytes and one species of Gymnosperm. Among the angiosperms, dicotyledons are 369, and monocotyledons are 79. Out of 455 plant species herbs are 138, shrubs 128, trees 136, stragglers and climbers 50, ferns 6, and parasites/epiphytes 7. Koteswara Rao [18] Reported 341 plant species, and 279

genera belonging to 104 families. Among the 104 families 283 species belong to 83 families are dicots, 49 species belong to 13 families are monocots, 8 species belong to 7 families are Pteridophytes and 1 species is Lichen from Primitive tribal groups of Visakhapatnam District. Sandhya Sri [19] Reported 372 plant species, and 294 genera belonging to 101 families. Among the 101 families 328 species belong to 88 families are dicots, 41 species belong to 11 families are monocots, and 3 species belong to 2 families are Pteridophytes from the Bagata tribe of Visakhapatnam Agency. Aruna Kolli [20] Reported 249 species and 202 genera belonging to 81 families. Out of 249 species, 245 species are Angiosperms, and 3 species are Pteridophytes. Among the angiosperms, 217 species are dicots and 28 species are Monocots from the Jatapu tribes of the Hill Region of Srikakulam, Vizianagaram Districts located on the East coast of India.

S.No	Plant Name	Family	Habit	Part Used	Disease
1	Abrus precatorius	Fabaceae	Climber	Seed	Abortion
2	Acorus calamus	Araceae	Herb	Rhizome	Cold
3	Alangium salvifolium	Alangiaceae	Tree	Leaf	Arthritis
4	Alstonia venenata	Apocynaceae	Shrub	Stem bark	Anthelmintic
5	Amaranthus spinosus	Amaranthaceae	Herb	Root	Dyspepsis
6	Amarphophallus paeoniifolius	Araceae	Herb	Corm	Bone fractures
7	Arisaema tortuosum	Araceae	Herb	Tuber	Headache
8	Aristolochia indica	Aristolochiaceae	Climber	Root	Diarrhea
9	Artocarpus heterophyllus	Moraceae	Tree	Leaf	Skin disease
10	Asparagus racemosus	Liliaceae	Herb	Tuber	Bronchitis
11	Bombax ceiba	Bombacaceae	Tree	Leaf	Leucorrhoea
12	Bridelia retusa	Euphorbiaceae	Tree	Stem bark	Chest pain
13	Buchanania lanzan	Anacardiaceae	Tree	Stem bark	Boils
14	Butea monosperma	Fabaceae	Tree	Stem bark	Antifertility
15	Caesalpinia bonduc	Caesalpiniaceae	Shrub	Seed	Abortion
16	Caryota urens	Arecaceae	Tree	Inflorescence	Aphrodisiac
17	Cassia absus	Caesalpiniaceae	Herb	Flowers	Asthma
18	Centella asiatica	Apiaceae	Herb	Leaf	Anaemia
19	Chlorophytum arundinaceum	Liliaceae	Herb	Tuber	Hydrocele
20	Chloroxylon swietenia	Flindersiaceae	Tree	Stem bark	Cold
21	Cissus quadrangularis	Vitaceae	Herb	Stem	Fever
22	Costus speciosus	Costaceae	Herb	Rhizome	Abortion
23	Cryptolepis buchanani	Asclepiadaceae	Climber	Root	Diarrhoea
24	Dalbergia latifolia	Fabaceae	Tree	Stem bark	Fever
25	Datura metal	Solanaceae	Shrub	Root	Asthma
26	Dendrophthoe falcata	Loranthaceae	Parasite	Stem bark	Asthma
27	Eclipta prostrata	Asteraceae	Herb	Whole plant	Acidity
28	Elephantopus scaber	Asteraceae	Herb	Root	Anthelmintic
29	Elytraria acaulis	Acanthaceae	Herb	Tuber	Anasarca

Table 1 Ethnomedicinal plants used by Khondu tribes of Dumbriguda Mandal, Alluri District

30	Erythrina suberosa	Fabaceae	Tree	Root	Dysentery
31	Eucalyptus globulus	Myrtaceae	Tree	Leaf	Antiseptic
32	Gloriosa superba	Liliaceae	Herb	Leaf	Asthma
33	Glycosmis pentaphylla	Rutaceae	Shrub	Fruit	Conjunctivitis
34	Gmelina asiatica	Verbenaceae	Tree	Fruit	Dandruff
35	Grewia tiliifolia	Tiliaceae	Tree	Leaf	Lice
36	Hemidesmus indicus	Asclepiadaceae	Climber	Root	Diarrhoea
37	Holarrhena pubescens	Apocynaceae	Shrub	Stem bark	Asthma
38	Holoptelia integrifolia	Ulmaceae	Tree	Root	Abortion
39	Hugonia mystax	Linaceae	Shrub	Root	Swellings
40	Hybanthus ennaespermus	Violaceae	Herb	Whole plant	Impotency
41	Justicia adathoda	Acanthaceae	Shrub	Leaf	Cough
42	Lagerstroemia parviflora	Lythraceae	Tree	Leaf	Dysentery
43	Lannea coromandelica	Anacardiaceae	Tree	Stem bark	Cuts
44	Lawsonia inermis	Lythraceae	Shrub	Leaf	Jaundice
45	Mallotus philippensis	Euphorbiaceae	Tree	Fruit	Anthelmintic
46	Mangifera indica	Anacardiaceae	Tree	Gum	Boils
47	Manilkara hexandra	Sapotaceae	Tree	Stem bark	Body pain
48	Memecylon umbellatum	Melastomataceae	Tree	Root bark	Leucorrhoea
49	Nelumbo nucifera	Nelumbonaceae	Herb	Perianth	Conjunctivitis
50	Nyctanthus arbor-tristis	Nyctanthaceae	Tree	Seed	Dandruff
51	Ocimum basilicum	Lamiaceae	Herb	Seed	Diarrhoea
52	Ocimum tenuiflorum	Lamiaceae	Herb	Leaf	Conjunctivitis
53	Olax scandens	Olacaceae	Climber	Stem bark	Anemia
54	Oroxylum indicum	Bignoniaceae	Tree	Root bark	Antifertility
55	Phoenix sylvestris	Arecaceae	Tree	Root	Asthma
56	Phyllanthus amarus	Euphorbiaceae	Herb	Plant	Jaundice
57	Phyllanthus emblica	Euphorbiaceae	Tree	Stem	Bone fractures
58	Piper longum	Piperaceae	Climber	Flowers	Asthma
59	Plumbago zeylanica	Plumbaginaceae	Shrub	Root	Abortion
60	Polyalthia cerasoides	Annonaceae	Tree	Gum	Chest pain
61	Rauvolfia serpentina	Apocynaceae	Herb	Root	Fever
62	Scoparia dulcis	Schrophulariaceae	Herb	Root	Dysentery
63	Solanum nigrum	Solanaceae	Herb	Whole plant	Gonorrhea
64	Solanum surattense	Solanaceae	Herb	Root bark	Jaundice
65	Strychnos potatorum	Loganiaceae	Tree	Seed	Blood pressure
66	Strycnos nuxvomica	Loganiaceae	Tree	Stem bark	Asthma
67	Syzygium cumini	Myrtaceae	Tree	Stem bark	Burns

68	Tamarindus indica	Caesalpiniaceae	Tree	Stem bark	Asthma
69	Tarenna asiatica	Rubiaceae	Shrub	Stem bark	Dysentery
70	Tridax procumbens	Asteraceae	Herb	Leaf	Cuts
71	Tylophora indica	Asclepiadaceae	Climber	Leaf	Asthma
72	Vanda tassellata	Orchidaceae	Herb	Root	Fractures
73	Vernonia cinerea	Asteraceae	Herb	Seed	Leucorrhoea
74	Woodfordia fruticosa	Lythraceae	Shrub	Flowers	Diarrhoea
75	Wrightia tinctoria	Apocynaceae	Tree	Latex	Asthma
76	Xanthium strumarium	Asteraceae	Herb	Root	Boils
77	Xylia xylocarpa	Mimosaceae	Tree	Root bark	Gonorrhea
78	Zingiber officinale	Zingiberaceae	Herb	Rhizome	Dyspepsia

4. Conclusion

Industrialization, urbanization, modernization and the consequent developmental activities on one side and acculturation of the ethnic societies on the other have set in motion causing destruction of forests and devastation of ethnobotanical knowledge. It is high time now, that all the Governmental and Non-Governmental Organizations should redouble their efforts to conserve plants of potential economic value, particularly ethnomedicinal plants and the ecosystems they inhabit. The scientific validation of these remedies may help in discovering new drugs from the plant species. The information on therapeutic uses of plants may provide great potential for discovering new drugs and promoting awareness among the people to use them as remedies in the health care system. Moreover, it may further be mentioned that over-exploitation of these species in the name of medicine may lead some species ultimately to the disappearance in future.

Compliance with ethical standards

Acknowledgments

The authors are thankful to the local people for their cooperation during the study period.

Disclosure of conflict of interest

The authors declare that they hold no competing interests.

References

- [1] Akerele, O. 1992. WHO guideline for assessment of herbal medicines. Fitoterapia 63: 99-118.
- [2] Huxley, A. 1984. Green Inheritance: The World Wildlife Fund Book of India, Collins/Harvel, London.
- [3] Anonymous, 1990. Ethnobiology in India: A Status Report. Ministry of Environment & Forests, Govt. Of India, New Delhi, 1 – 68 pp.
- [4] Hemadri, K. 1976. Procurement of raw drugs in Andhra Pradesh. Nagarjun 20: 7-13.
- [5] Rao, R S. & K. Hemadri 1979 Andhra Pradesh lo Mandumokkalu. Telugu Academy, Hyderabad. (in Telugu); (reprinted in 1984).
- [6] Hemadri, K. 1994. Shastravettalanu Akarshistunna Girijana Vaidyam (Tribal Pharmacopoeia). Tribal Cultural Research and Training Institute, Hyderabad. (in Telugu).
- [7] Hemadri, K. 1987. Andhra Pradesh Vanamulikalu. Chemiloids, Vijayawada. (in Telugu).
- [8] Rao, M. K.V & O.S.V.D. Prasad 1995. Ethnomedicines of tribes of Andhra Pradesh. J. Non-Timber Forest Products 2: 105-114.

- [9] Reddy, R.V., M. H. Reddy, & R.R.V. Raju 1996. Ethnobotany of less known tuber-yielding plants from Andhra Pradesh. J. Non-timber Forest Prod. 3: 60-63.
- [10] Krishnamurthy, V.V. 1958. The tribal people of Rampa and Gudem agency of Godavari Lower Division. Indian Forester 84: 428-431.
- [11] Banerjee, D.K. 1977. Observations on the ethnobotany of Araku Valley, Visakhapatnam district, Andhra Pradesh. J. Sci. Club 31: 14-21.
- [12] Gupta, V. G., S.J. Hussain & S. Imam 1997. Medico-ethnobotanical survey of Paderu forests of Araku valley, Andhra Pradesh, India. Fitoterapia 68: 45-48.
- [13] Jain, S.K. (1994). Ethnobotany and research on medicinal plants in India. CIBA Foundation Symposium 185. In: J. Chadwick and J. Marsh (Ed.), Ethnobotany and the search on New Drugs. John Willy & Sons, United Kingdom. pp. 153-168.
- [14] Pullaiah, T., & Ramamurthy, K.S. (2002). Flora of Eastern Ghats: Hill ranges of South East India (Vol. 2). New Delhi: Regency Publications.
- [15] Pullaiah, T., Ramamurthy, K.S., & Karuppusamy, S. (2007). Flora of Eastern Ghats: Hill ranges of South East India (Vol. 3). New Delhi: Regency Publications.
- [16] Pullaiah, T., & Rao, D.M. (2002). Flora of Eastern Ghats: Hill ranges of South East India (Vol. 1). New Delhi: Regency Publications.
- [17] Padal S.B 2010. Studies on Ethnobotany from Paderu division, Visakhapatnam District, Andhra Pradesh, India. Ph.D thesis, Department of Botany, Andhra University, Visakhapatnam.
- [18] Sandhya Sri 2011. Studies on Ethnobotany of Bagata tribes from Visakhapatnam District, Andhra Pradesh, India. Ph.D thesis, Department of Botany, Andhra University, Visakhapatnam.
- [19] Koteswara Rao 2010. Studies on Ethnobotany from Primitive tribal groups of Visakhapatnam District, Andhra Pradesh, India. Ph.D thesis, Department of Botany, Andhra University, Visakhapatnam.
- [20] Aruna Kolli 2012. Studies on Ethnobotany of Jatapu tribes A.P. Ph.D thesis, Department of Botany, Andhra University, Visakhapatnam.