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Abstract 

Cystic Fibrosis (CF) is a genetic disorder which results in abnormal Cystic Fibrosis Transmembrane Regulator (CFTR) 
protein. CFTR protein actively transports chloride and bicarbonate out of cells which produce mucus in epithelium of 
various organs. However, when there is an abnormality in this protein then ion and water transport across airway 
surface is affected and form viscous mucus due to dehydration. This disease affects lung, pancreases, intestine and 
hepatobiliary system. Infection of lungs is main reason of high morbidity and mortality. Patients with CF are more prone 
to bacterial infection of the respiratory tract. Mainly four bacterial pathogens are found in the respiratory tract of CF 
patient viz. Staphylococcus aureus, Haemophilus influenzae, Burkholderia cepacia, Pseudomonas aeruginosa. Mucoid P. 
aeruginosa is the most dangerous pathogen among them due to ability to form biofilm. There are many conventional 
and new treatment options available for CF patients. New therapies are used to correct the CFTR protein and antibiotic 
treatment is used to prevent or early infection or suppression of chronic infection. However, when P. aeruginosa turn 
into mucoid form, formation of extracellular polysaccharide biofilm starts with alginate as major constituent. The 
antibiotics fail to reach the target as EPS of the biofilm shield the microbe from antibiotics action. Alginate lyase, an 
alginate degrading has the ability to break the alginate and subsequently increases the efficacy of antibiotics therapy. 
The co-administration of alginate lyase and Dnase along with antibiotics has proved to be very efficient in the 
management of patients with CF. 
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1. Introduction

Cystic Fibrosis is single gene autosomal recessive genetic and life threatening disorder which is characterized by 
damage to the respiratory and digestive system [1]. This disease also affects the lungs, upper and lower airways, 
pancreas, intestine and hepatobiliary system [2]. CF is frequently genetically inherited chronic disease in Caucasian 
population of northern European ancestry [3]. Clinical features of CF include salty flavor skin, continuous coughing and 
dyspnea, viscous mucous (sputum), unhealthy or breathe audibly, non-cancerous growth on the lining of sinuses foul 
smelling and greasy stools, body weight imbalance, intestine blockage especially in new born and acute constipation. 
This disease occurs due to mutation in cystic fibrosis trans-membrane conductance regulator protein which is also 
called CFTR [4]. The CFTR gene is present on the 7th chromosome in humans [5]. The most frequent mutation in the 
CFTR gene is deletion of phenylalanine at codon 508 [6]. Different mutations in this gene have different effects on CFTR 
function and can result in various phenotypes of disease. The CF mutation does not show any symptoms of this disease 
in the carriers which are heterozygous [5]. The normal CFTR gene or protein transports the chloride through the cells 
which produce the mucous. This is followed by release of water which makes the mucous thin. However, in defective 
CFTR gene the mucous becomes viscous and leads to the blockage of the pathway and ultimately results in the clogging 
of lungs and obstruction in pancreas [7]. In addition to this, degranulating neutrophils release large quantities of nucleic 
acid and cytosol matrix proteins contributing to the mucous hyper-viscosity [8]. Functional CFTR is important for the 
proper hydration of the Airways Surface Liquid (ASL) in respiratory tract and this is important for ciliary movement 
which helps in the proper functioning of lungs and removal of inhaled microorganisms and particles. These inhaled 
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microorganisms and particles are thrown into the gut via mucociliary clearance and acid present in gut clear these 
microbes. The people with CF are unable to flush out their dehydrated airways mucous secretions which create the 
colonization of microorganisms [9]. This thickness of mucous reportedly leads to male infertility by clogging the vas 
deferens. Regular gene span of the CFTR is 250000 base pairs and encodes for protein of 1480 amino acids. The protein 
contains two trans-membrane (anchoring) domain, two nucleotide binding domain and a part which are termed as R 
(Regulatory) domain [10]. CFTR has a feature that is prevalent with a superfamily of protein found in nature which acts 
as active transporters of macromolecules. It is important because one of the parts of this superfamily, P glycoprotein 
perform the double function as transporter as well as chloride channel [11].  

Patients with CF are more prone to bacterial infection of the respiratory tract especially pneumonia and bronchitis. So 
continuous and acute antibiotic medication is compulsory for the proper functioning of the lungs and increases the life 
span. Antibiotic treatment is important because Pseudomonas aeruginosa is the main bacterial pathogen in the CF [12]. 
P. aeruginosa is a Gram negative opportunistic bacterium that resides in a broad range of surrounding and humid places 
and naturally unaffected by antibiotics. Most strains of P. aeruginosa generate one or more pigments namely pyocyanin, 
pyoverdin and pyorubin.  Studies have shown that pyocyanin not only help in persistence of P. aeruginosa in the lungs 
of CF patients but also involves in many mammalian cell functions such as cell respiration, cilliary beating, epidermal 
cell growth, calcium homeostasis and prostacyclin release from endothelial cells of lung [13]. In the lung of CF patients, 
P. aeruginosa have favorable environment with sticky mucous layer for the biofilm formation [14]. This biofilm provides 
shielding against antibiotics and immune responses to the P. aeruginosa. This shielding also leads to the conversion of 
non mucoid strain of bacteria into a mucoid strain of bacteria [15, 16, 17]. An oxygen gradient is present in biofilm [18, 
19]. In early CF infection most of the P. aeruginosa is characterized as non mucoid strain but in the deficiency of oxygen 
bacteria come under stress and non-mucoid strain transformed into mucoid strain [20]. This stress generates the 
mutation to happen on the genes which are related to the alginate production and controlled activation of the excess of 
the capsule like alginate. The biofilms comprising alginate is formed by the mucoid strain leads to less antibiotic entry 
and clog the phagocytosis of bacteria, although treatment with alginate lyase has improved antibiotic response [21]. In 
addition to this, in few patients pathology is manifested through digestive defective CFTR through the pancreas and up 
to 50% of people cured with CF also live through CF-related Diabetes (CFRD). CFRD generally presents type-1 and type-
2 Diabetes Mellitus in non-CF individuals [22]. Glucose-stimulated electrical conductance also participates in insulin 
excretions from pancreatic β-cells [23]. This CFTR results in the dysfunction of glucose-mediated electrical activity and 
stops the insulin excretions from β-cells in some patients of CF [24]. Liver disease also presents  the comprehensive 
pathology of CF. CFTR in the liver confined to the luminal surface of intrahepatic epithelial cells of bile duct, where it 
pours biliary secretions with bicarbonate in analogous to its function in the pancreas and also brings the flow of bile 
acids [25]. The absence of bicarbonate secretions leads to accumulation of harmful bile acids within liver cells. This 
generates an inflammatory response resulting in fibrosis analogous seen in pancreas and ultimately cirrhosis and portal 
hypertension [26].  CF is diagnosed through the estimation of sweat through sweat test, as high content of salt is present 
in sweat [27]. Many antibiotics are used in treatment of CF. Tobramycin is one of the antibiotic which is prescribed for 
the patients of CF who have an infection of P. aeruginosa. Tobramycin is commercialized as inhalator under registered 

name TOBI®. According to the Cystic Fibrosis Foundation (CFF) antibiotics are essential for curing the CF because 

patients with CF have high ubiquity of respiratory infections from P. aeruginosa. TOBI® an aminoglycoside; broad 
spectrum antibiotic produced by Streptomyces tenebrarius is widely used against Gram-negative bacterial infections 
and particularly useful in the treatment of P. aeruginosa in patients with CF. When the antibiotic and alginate lyase were 
bound together, a noticeable elimination of mucoid bacteria from biofilm was achieved. This fact may enhance the edge 
of antibiotic in the control of respiratory tract infection. Ceftazidime medication is effective against the non-mucoid 
strain of P. aeruginosa [28]. Newborn Screening is also helpful for CF treatment. Early identification supports the future 
aspects of the families which do not screen [29]. CFTR modulators theratyping is an innovative and fast growing field 
that has power to recognize rare CFTR variants that are reactive to drugs in development [30]. 

2. Alginate and alginate lyase 

Alginate is a high molecular weight, negatively charged polymer which is obtained from brown seaweed [31]. 
Commercially alginate is obtained from brown algae (Phaeophyceae) namely Laminaria hyperborea, L. digitata, L.  
japonica, Ascophyllum nodosum, Microcystis pyrifera and Saragassum muticum [32]. Alginate composed of compartment 
of (1, 4)-linked β-D-mannuronate (M) and α-L-guluronate (G) residues [21]. These compartments are composed of G 
residues, M residues and GM residues [31]. It was also extracted from bacteria such as Pseudomonas and Azobacter [33]. 
Alginate is a biomaterial that has great applications in biomedical science and engineering. Alginate is one of the most 
used dental materials as an impression material, used in orthodontic models, sports mouth guards and bleaching trays 
[34]. Alginate hydrogels are also used in wound healing, drug delivery and tissue engineering applications [31]. 
Extraction of alginate from seaweed is easy but multistage process. It starts treating the raw dried material with dilute 
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mineral acids which are water soluble [35]. Among the various alginates, sodium alginate is commonly used alginate in 
pharmaceutical and biomedical field [36]. In P. aeruginosa, alginate act as a carbon source, protect the bacteria and 
increases the adhesion to solid surface which results in biofilm formation [37]. Alginate producing P. aeruginosa 
interestingly associated with the surrounding of CF affected lungs [38]. Alginate which is secreted by patients with CF 
has potential to show resistance to both the host immune system and antibiotics. In the pathogenesis of CF, this alginate 
or mucoid exopolysaccharide show potential role in the bacterial adherence mechanism, hinders the phagocytosis and 
affects the leucocyte functioning [15]. Most proteins which enhance the alginate biosynthesis are encoded by 12-gene 
alg-D operon; this operon also encodes AlgL, a lyase which degrades the alginate [39]. Alginate lyase is an enzyme which 
brings the breakdown of alginate. It breaks the alginate through the β-elimination of glycosidic bond and produces the 
unsaturated oligosaccharides with double bond at the non-reducing ends [40]. Alginate lyase also has great application 
in the treatment of cystic fibrosis by breaking the alginate which is produced by mucoid strain of P. aeruginosa [41]. A 
recombinant paAlgL is also used for the enhancement of antibiotics against the P. aeruginosa [42]. Alginate lyases are 
also important for the breakdown of acidic polysaccharides using their endo and exo activity which in turn can be used 
for the production of the bioethanol [43]. 

3. Machinery involved in non-mucoid to mucoid transition of P. aeruginosa 

The CFTR of epithelial cells help the defense system of the host by binding reversibly to the bacteria under normal 
circumstances. Hence, mutation in the CFTR gene hinders the normal eradication of the pathogen from the respiratory 
tract [44]. As among all the microbes responsible for CF, the major contributor leading to 2.6 time higher fatality rate is 
P. aeruginosa [45]. It is of significant importance to understand the machinery involved in the transition of non-mucoid 
strain into mucoid one. Infection of P. aeruginosa is accompanied by two developmental stages progressing from 
sporadic to chronic infection [46]. The stage of sporadic infection can be eliminated by vigorous antibiotic therapy [47]. 
However, as soon as the mucoid form is observed in sputum sample of the patients, antibiotics fail to eliminate the 
pathogen from the lungs [47]. Alginate production in excessive amount signals the initiation of the mucoid conversion 
[48]. Presence of this polysaccharide possibly facilitates in bacterial adherence to the surface, resists phagocytosis, 
counteract oxygen radical, affect the immune system regulation via secretion of pro-inflammatory cytokines and 
repression of lymphocytes transformation [49, 15]. 

Non-mucoid strains present in the primitive infectious stage cause less distress in the lung environment. However, the 
advent mucoid strain can be associated with the formation of bacterial biofilm, development of anti-P. aeruginosa 
antibodies and inflammation [49]. The host’s protective responses against the mucoid strain are mainly governed by 
PMNs (polymorphonuclear leukocytes) and antibodies [50]. The biofilm of P. aeruginosa trigger the oxidative burst of 
PMNs [51] and the complement system [52]. There are possibilities that the host’s own inflammatory response to the 
infection is responsible for the conversion of non-mucoid strain [53]. A study was conducted to examine the importance 
of PMNs and toxic oxygen by products released in the selection of mucoid variants. The natural inflammatory host 
response was imitated by growing P. aeruginosa PA01, non-mucoid strain in a biofilm followed by treatment with low 
levels of H2O2, which was otherwise released by the PMNs under in vivo conditions and as a result, development of 
mucoid variants has been observed [53]. 

4. Mutation in gene encoding MucA leads to mucoid conversion 

The reason behind occurrence of chronic stage of CF infection is the phenomenon involving switching of P. aeruginosa 
infecting strain into alginate overproducing mucoid strain which leads to worsening clinical outlook [15]. This switch 
mainly occurs due to loss of function of MucA which acts as an anti-sigma factor. Transcriptional activation of AlgD leads 
to mucoidy. AlgD heads biosynthetic pathway of alginate production as it encodes for GDP mannose dehydrogenase, 
which is alginate specific enzyme. It catalyses double oxidation of GDP mannose into its uronic acid and this reaction 
provides a route to sugar intermediates to participate in alginate production. AlgU is an alternative sigma factor 
required for initiation of AlgD transcription. In cases of AlgU is inactivation, AlgD transcription discontinues and 
mucoidy got revoked [54]. Genetic evidence suggests that P. aeruginosa MucA and MucB suppress the regulation of 
alginate production by AlgU [55]. The AlgU gene along with negative regulators MucA and MucB controls the conversion 
of non-mucoid into mucoid strain. Mutation in MucA sets AlgU uninhibited which in turns causes activation of AlgU(σ 
E)-dependent promoters of AlgD and AlgR. AlgR binds to 3 sites RB1, Rb2, Rb3 in the AlgD promoter [56] and in 
association with AlgU causes strong transcription activation of AlgD resulting in alginate overproduction. An 
experiment was performed. to investigate the presence of MucA mutation in the H2O2 treated strains Same mutation 
was observed   in them which involves deletion of a guanine residue in a strand comprising 5 guanine residue situated 
at 426-430 bp in the MucA ORF, leading to early termination of translation followed by formation of truncated MucA 
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protein which is unable to binds to AlgT (also called AlgU) and result in continuous expression of alginate biosynthesis 
operon [53]. 

5. Microbial environment of lungs in case of CF 

Humans are generally habituated with the microflora of their body and in this scenario there is no occurrence of disease 
such a CF. However, this relationship gets disturbed as a result microbes evolve into pathogens. The condition becomes 
favorable for bacterial intrusion and colonization in the particular organ (lungs in case of CF) as soon as the disease 
affects the body organs [57]. CF is marked by the huge diversity of microflora in lungs. The cosmopolitan nature of 
microbial environment can be correlated to the presence of antibiotics, stratified oxygen environment in the lungs, 
inflammatory products including eDNA released during host immune response etc. which favors the growth of variety 
of bacterial species [58, 59]. Microbial diversity was observed on the basis of different zones of oxygen in the lung 
environment and it was found that microbial species not only vary with patients but also varies within the same patient 
at different point of time.  

A large number of studies have been conducted to identify the CF causing pathogens. Each study has its own selection 
basis and concentrated on broader categories of microbes but most of the studies have focused on bacterial pathogens. 
The four major pathogens which are the main focus of all clinical studies include Staphylococcus aureus, Haemophilus 
influenzae, Pseudomonas aeruginosa and Burkholderia cepacia. Presence of S. aureus and non-encapsulated H. influenzae 
indicate the early stages of infections during infancy. Invasion by P. aeruginosa has been observed later in life of the 
patient which is often the chronic stage of infection [57]. Other contributors which aid in elevating the fatality rate 
include Stenotrophomonas maltophilia, Alcaligenes xylosoxidans and Klebsiella sp. [16, 60]. Apart from bacterial 
pathogens, the range of the species extends to viruses for example respiratory syncytial virus, Adenovirus, influenza 
[61] and fungi which include Aspergillus sp. and Candida sp. [62]. 

This evident microbial diversity led the researchers to focus and identify more bacterial species from sputum of CF 
patients. A study aimed at comparing the biofilm formation ability, reported two new bacteria Inquilinus limosus and 
Dolosigranulum pigrum found in phlegm of patients [63]. I. limosus is an aerobic Gram-negative Bacillus [64] which is a 
potential threat because of its ability to exhibit mucoid phenotype, multiple drug-resistance and prolonged existence in 
the airway. However, the pathogenesis of D. pigrum is not very clear because of no or little evidence in favor of its 
antibiotic resistance ability, but it is strongly correlated with nosocomial pneumonia and blood poisoning [65]. 

6. Major players in pathogenesis of CF 

6.1. Staphylococcus aureus 

This Gram positive bacterium is the first and foremost detected pathogen in the case of CF, possibly due to the poor 
immune defense system in infant population detected with CF [66]. Among 48% of all the healthy children in the USA 
and 36% in Netherlands S. aureus was found to be present mainly in the pathway connecting pharynx to the nasal cavity 
[67, 68]. The S. aureus exhibit basically two types of phenotypes; Small Colony Variants (SCV), persisted in the lung 
environment because of their ability to circumvent the host immune response by decreasing the expression of virulence 
factors associated with them [69] and Methicillin-Resistant S. aureus (MRSA) which is a more serious clinical threat 
[66]. Although it’s existence is uncommon in comparison to the latter but the treatment of SCVs can lead to eminence of 
the MRSA. 

6.2. Haemophilus influenzae 

H. influenzae usually present in the nasopharynx region is the second most common microbe found in infants suffering 
from CF. Probability of occurrence of H. influenzae in children’s is estimated to be 20% .The percentage may increases 
to 50% in the case of children to 75% in the case of adults [70].Various serotypes of H. influenzae have been categorized 
mainly on the basis of presence or absence of capsules. However, it has been reported that non-capsulated bacterium 
referred to as H. influenzae (NTHi) is mostly correlated with chronic lung infection and severe aggravation in CF subjects 
[71, 72]. NTHi own various adherence factor which comprises HMW1/HMW2 and Hia protein plays a significant part in 
bacterial colonization [73]. 
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6.3. Burkholderia cepacia 

It is the most dangerous opportunistic human pathogen associate with CF [74]. Most of the severe respiratory 
complications CF in are caused by P. aeruginosa whereas B. cepacia contributes to only a small size of population [75]. 
However, B. cepacia infections are highly intimidating because of its fluctuating nature as well as worsen prognosis 
ranging from no symptoms of illness to a vehement septicemia with a critical respiratory collapse known as cepacia 
syndrome [76]. The potential of high antibiotic resistance and capacity to survive under adverse environmental 
conditions creates a major threat to its eradication difficult to nearly impossible from the lung environment [77]. C.F 
infections involving B. cepacia are marked by the presence of either single strain or co-infection with two or more 
distinct strains or species. Further succession of early strain with another one in a later phase of infection can also occur 
[78]. 

6.4. Pseudomonas aeruginosa 

P. aeruginosa is the most dangerous opportunistic pathogen due to the presence of a wide assemblage of virulence 
factors, biofilm forming ability which confers antibiotic resistance and tight regulation of quorum sensing mechanism 
[79].  The quorum sensing modulates 10% of the genome of P. aeruginosa which includes of its swarming motility, 
biofilm maturation and antimicrobial resistance. The quorum sensing mechanism also regulates the production of 
various virulence factors like exotoxins, elastases and pyocyanin [80]. Phlegm samples from CF patients have been 
diagnosed with quorum sensing signals molecules (QSSMs) [81]. It was suggested that QSSMs can possibly be used as 
an indicator molecule of P. aeruginosa, to target it for the treatment. 

7. Role of quorum sensing in biofilm formation by P. aeruginosa 

Quorum sensing in P. aeruginosa is a complex circuit and generally comprising of two systems. The first in the hierarchy 
to be expressed is the las system which consists of genes encoding lasI and las R [82]. The lasI has ability to produce N-
3-oxododecanoyl-L-homoserine lactone (3O-C12-HSL)[83] which is required to activate the las R. The las R binds to 
promoters of quorum sensing regulated genes to govern the production of elastase, staphylolysin, alkaline protease, 
exotoxin, hydrogen cyanide synthase as well as lasI itself, thereby enhancing the signaling process [84]. The las system 
exerts a positive feedback for enhanced production of 3O-C12-HCL and also instigates the second system. The second 
system comprises of RhII and RhIR transcription activators [85]. This system requires a different signaling molecule. 
RhII produces N-butanol-homoserine C4-HSL [86]. The rhamnolipid synthesis genes, the stationary phase sigma factor, 
type-1 lectin, type-2 lectin, hcn ABC and pyocyanin production genes are expressed by the RhI system. Another 
important signal of quorum sensing is quinoline signal (PQS), which relies on the fair production of N-3-oxodo-
decanoyl-l-homoserine lactone and N-butryl-l-homoserine lactone [87]. PQS molecules (2-heptyl-3-hydroxy-4-
quinolone) play an important role in the transcription of virulence genes mainly involves in production of pyocyanin 
and rhamnolipid of P. aeruginosa. A type four secretion also exists in P. aeruginosa which in combination with membrane 
vesicles eases the transport of effector molecules to target organisms [88]. N-acyl homoserine lactones secreted by P. 
aeruginosa biofilm are sensed by the neighboring microbes in response to which they start constructing their own 
biofilm. This phenomenon is indicative of the existence of intraspecies signaling in the infectious lung environment [89]. 

8. Microbial association in lungs of the CF patients 

Lungs of CF patient have heterogeneous mixture of microbial species which colonies the airways exhibiting wide variety 
of interactions among them and this can alter their persistence in the lungs as well as the clinical outcomes. Two or 
more bacterial species are present in 31% of the CF patients [90] and co-infections were also observed [91, 92]. Old 
standardized culture techniques fail to recognize the microbial diversity in CF lungs [93]. Identification methods and 
culture techniques are augmented with 16s rRNA sequencing [94] and RFLP [95] to obtain a comprehensive and clear 
picture of the lung microbiota. The microbiota of CF lungs advances with age of the subject and different age groups are 
colonized with different population of bacterial species [96]. However, the diversity decreases with persistence of 
infection and as the infection becomes old P. aeruginosa species predominates [97]. 167 clonal isolates has been found 
in the sample from a single patient and such a vast diversity within a single patient can be a major reason for P. 
aeruginosa dominance in the later stage of infection [98].  The different microbial species present in the airways of CF 
patients can interact mainly in two ways: synergistically and antagonistically: 

8.1. Synergism 

The colonisation by bacterial species in CF patients follow succession [92]. S. aureus,  mainly found in the lungs of infants  
make the environment favorable for further infection by P. aeruginosa and this is one of the historic evidence of 
synergism [99, 16]. Co-infection of mucoid strain of P. aeruginosa along with rare bacterial species exacerbated the 
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infection as compared to the mucoid strain infection alone [92]. P. aeruginosa promotes infection of B. cepacia by 
upregulating the expression of its virulence factor [100]. 

8.2. Antagonism 

A kind of hostile relationship has also been evident between S. aureus and P. aeruginosa. It has been found that P. 
aeruginosa emanates certain factors which hinder the growth of S. aureus [101] or sometimes P. aeruginosa  use the 
iron released by breakdown of S. aureus cell for  their own growth [102]. On the other hand, S. aureus  utilizes 4-hydroxy-
2-heptylquinline-N-oxide to protect itself from aminoglycosides based antibiotics [103]. Two kinds of antagonisms 
behavior have mainly been observed. First one includes the formation of bacteriocins. Bacteriocins are chemical 
substances released by host bacteria to inhibit the growth or completely kill the bacteria belonging to another strain or 
species [104]. However, bacteriocin production requires input from the bacterium own machinery and due to this it 
results in diminished growth of the host bacterium, which can affect its virulence capacity [105]. 

The second one includes the progression of cheats, which led to the collapse of existing cooperative relationship 
between two bacterial species. When two microbial species are in communal relationships, they secrete certain 
products like degradative enzymes, iron-foraging sideophores, and toxins etc which are beneficial for growth of both 
[106]. Further, one of the microbial species became a hoaxer and utilizes the product for its own growth without 
contributing in its formation. If the population density of this kind of cheat reaches to a certain concentration, it will 
have significant impact on the growth of its counterparts and the amount of metabolite produced [107]. 

The metabolite produced during cooperative relationships may be required for the virulence and such antagonism can 
lead to decrease in pathogenicity of infection [108]. Antagonistic relationships has also been observed between the CF 
pathogens and natural microflora of host present in different part of the host body (Example- Gut-associated microflora, 
skin, oral cavity) etc. It was found that a healthy gut microflora hinder the growth and helps in elimination of P. 
aeruginosa. The feeding of mice with natural yoghurt or augmented with Lactobacillus casei, enhance the phagocytic 
activity of alveolar macrophages, which in turn aid in the elimination of P. aeruginosa  present in the airways [109]. 

9. Conventional treatment of the CF 

The CF disease mainly involves clogging of the respiratory tract with mucus which can lead to the repetitive infections 
and inflammations [110]. Most of the conventional treatments of CF target the clearance of the mucus from the 
respiratory tract. Drugs and therapies used are categorized on the base of the mode of their action. 

9.1. Agents targeting mucus clearance 

The lysis of neutrophils occurs in the lungs leading to the release of large quantity of eDNA, as a part of the human 
immune response to CF infections and this leads to a more viscous sputum. Deoxyribonuclease helps in the digestion of 
this extracellular DNA in turn aiding the process of clearance of the respiratory tract [111]. It further helps in reducing 
the severity of infection as well as improves lung functions. The early administration of Dnase in children of age less 
than 2 years helps in improving their nutritional well-being with respect to body mass index [111]. The CF leads to 
hyper inflammation of airway epithelial cells which in turns secretes increased amount of chemo attractants IL-8 for 
neutrophils which seems to worsen neutrophils mediated inflammation [112]. Airway epithelial with inadequate CFTR 
secretes smaller amount of glutathione [113] which is essential for counteracting the reactive oxygen species by 
oxidative processes produced in response to infection. The N-acetyl-L-cysteine elevates the amount of antioxidant 
glutathione and helps in preserving the inflammation of tissues caused by hyperactivity of neutrophils. 

9.2. Approaches to rehydrate CF airways 

One of the main pathology associated with CF is the thickening of mucus in the airways of patients because of the defect 
in CFTR as it plays an important role in hydration of airway surface liquid [9]. The defective CFTR leads to increase 
epithelial sodium channel mediated hyperabsorption of sodium [114] and causes increased dehydration of airway 
surface liquid leading to accumulation of thick mucus [115]. This thickening of mucus provides a favorable environment 
for bacterial colonization [116]. Hypertonic solutions help in rehydrating the airways by restoring ion balance and 
maintaining mucus osmolality [117]. Another mechanism by which hypertonic solution aids in mucociliary clearance 
involves induction of coughing episodes which help in removal of deposited material in the tract [118]. It has been 
indicated via a study that 6% hypertonic saline solution given for 16 weeks helps in improving lung function [119]. 
However, the treatment continued for long failed to show any further improvement but some incidences depicted 
extended intervals in the occurrence of pulmonary exacerbations with the use of hypertonic saline solution [120]. The 
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dose of hypertonic saline solution depends on the limit of patient’s tolerability with an upper limit of 12% and beyond 
this it causes irritation in the throat region as per the study conducted by Robinson and colleagues [121]. 

Another reported hydrating agent is mannitol which helps in stabilizing an osmotic gradient on the surface of the 
airways as well as aids an increase in the volume of surface liquid. Introduction of mannitol in CF patients increases the 
sensitivity of antibiotics tobramycin on mucoid P. aeruginosa forming biofilms [122]. Two comparative phase III trials 
was conducted of 26 weeks duration which involved inhalation of mannitol by patients and an improved lungs function 
and reduction in exacerbation episodes were observed [123].  The use of mannitol is considered appropriate by the 
National Institute for Health and Care Excellence situated in England for those patients who are intolerant or not 
compatible with treatments of rhDNase or hypertonic saline agent. 

9.3. CFTR correctors  

Six classes of CFTR correctors (Table 1) have been identified to correct the pathology which arises due to production of 
defective CFTR protein. 

Table 1 Classes of CFTR mutations and their correctors 

Mutation 
types 

Description Devices Manufacturer 

TYPE I Involves addition of prematurely 
terminated codon in the sequence which in 
turn leads to disruption of protein 
translated from this truncated sequence or 
the mRNA containing prematurely 
terminated codon. 

PTCI24 (commercialized as 
Ataluren). Small molecule 
compound is administered 
orally. 

Translarna® PTC 
Therapeutics Ltd, 
New Jersey 

TYPE II Involves the generation of misfolded 
proteins which are unable to be transported 
through the membrane. This protein is 
targeted for premature degradation by 
endoplasmic reticulum. The mutation 
ultimately led to decrease in the number of 
CFTR molecules reaching the cell. 

Lumacaftor VX-809, VX-
152 and VX-440 are under 
clinical development. 

Triple therapy combination 
studies under clinical 
phase II includes- 

VX-152/VX-661/Ivacaftor 

VX-440/VX-661/Ivacaftor 

Orkambi® Vertex 
Pharaceuticals 
(Europe) Ltd, UK 

TYPE III Also called gating mutation in which CFTR 
tunnels got blocked thereby reducing 
chloride transport efficiency. 

Ivacaftor® (VX-770) 

[USFDA approved] 

Kaldeyco®, Vertex 
Pharmaceuticals Ltd, 
UK 

TYPE IV Alteration in the transmembrane pore due 
to substitution of incorrect amino acids in 
the membrane spanning domain which 
hinders the conductance of bicarbonate or 
chloride. 

Ivacaftor® has been 
evaluated for increased 
survival 

 

TYPE V Results in degradation of small portion of 
mRNA thereby reducing the quantity of 
CFTR produced. 

Treatment under research 

TYPE VI Increased frequency of recycled CFTR from 
plasma membrane which is unable to make 
up with the normal chloride output levels. 

Treatment under research 

9.4. Treatment with antibiotics 

Antibiotic treatment can be used for prevention or elimination of early infection or suppression of chronic infection or 
in case of aggravated infection. Tobramycin is manufactured by Novartis Pharmaceuticals, UK and available in the 
market in two forms either as tobramycin solution given via inhalation or in the form of powder. This antibiotic is mainly 
used for the suppression or eradication of P. aeruginosa infection. Inhaled tobramycin is the first line of treatment in 
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North America [124]. Colistimethate sodium is manufactured as Colobreathe® by Forest Laboratories Ltd, UK and used 

mainly in the suppression of severe infection involving P. aeruginosa. Aztreonam lysine is manufactured as Cayston® 
by Gilead Sciences Ltd, USA and used mainly in the case where patients are intolerable to colistimethate sodium or 
tobramycin. On the basis of 7 controlled randomized trials, this drug was proved to be efficient against P. aeruginosa  by 
detecting the change in forced expiratory volume from baseline  with an estimated improvement of 3.5% [125]. Other 
antibiotics used include liposomal amikacin which aids targeted drug delivery and shown to increase forced expiratory 
volume at both phase II and phase III trials. Solution based levofloxacin has to be inhaled and manufactured as 
Bronchitol® by Pharmaxis Pharmaceuticals, USA . 

10. Drawbacks of conventional treatments 

Major challenge faced in conventional treatment is its affordability to the general masses and most of the treatment 
requires longer duration to show their effectiveness. This leads to the requirement of repeated administration and 
moreover, in some cases the exact duration and effectiveness of treatment is variable. The severity, with which the 
disease comes, requires the treatment to be available to each and everyone, but this is a challenging task in reality.  The 
problem of availing recently developed precision medicines become more complex with the increase in the survival rate 
of patients in Western Europe by 2025 [126]. The traditional treatment in UK include colistimethate sodium, 
tobramycin etc. [127]. The problem lies in the access of newer medicines to the patients as the lag period between 
medicine approval, marketing and availability to the patient is very long. Being a matter of international concern, a 
survey was conducted to estimate both direct and indirect cost in different countries associated with CF treatment, over 
the past 15 years [128]. The cost of treatment of CF individual was estimated to €19,581.08, €23,330.82 and €68,696.42 
in Poland, Bulgaria and the US, respectively. 

Ivacaftor® in spite of having great potential and risk capital-based development, reported to be the most expensive 

treatments. The average cost of Ivacaftor® per patient is reported to be €182,000.The compliance rate for Ivacaftor® in 
clinical trials came out to be 91% [129]. However, an electronic monitoring conducted by investigators of UK, reported 
compliance of 61% in comparison to other treatments [130]. These contradictory data puts a big question on its clinical 
and economic value. Although the precision medicines target the gene defects and are comparatively more successful 
than gene therapy which are still in clinical trials, but their long-term effects are still unknown and their unaccepted 

high cost further adds to the problem. Orkambi® which is a combination of Lumacaftor® and Ivacaftor® was scrutinized 
for its cost and effectiveness in terms of its medical benefits. It costs around € 104,000 per person every year, and the 
estimated cost covering the entire individual prescribed for Orkambi® would be around €500m every year. 

11. Gene therapy for cystic fibrosis 

Gene therapy seems to be a convincing approach in the case of CF as it is a single gene disorder which is recessive in 
nature and can be treated simply by replacement of the defective CFTR gene with the normal one. More than 20 clinical 
trials have been undergone for gene therapy using both viral and non-viral agents. Viral vectors till date used includes 
adenovirus, adeno-associated virus, lentivirus and sendai virus. However, various problems have been encountered in 
viral mediated gene transfer. Neutralizing antibodies are produced by the host immune response with repeated 
exposure in response to viral capsid. Alternatively, in order to avoid repeated administration of virus, permanently 
transfect stem cells of the airways with integrating vector.  Further, in case of immunodeficient patients it was found 
that integrated vectors induce oncogenic response. Abnormal toxicity and inflammation have been observed in some 
case of engineered adenovirus. Virus which don’t induce immunogenicity, also don’t possess receptors for specific 
proteins present on respiratory epithelial cells (Lentivirus). Non-viral gene transfer agents like liposome and 
nanoparticle based encapsulations, seems to generate inflammatory responses by host immune systems as they consist 
of a high level of unmethylated CpG dinucleotides which are recognized as foreign by the human body [131]. 

12. Enzymatic treatment for cystic fibrosis 

The experiments conducted to recognize the contribution of alginate lyase in disrupting alginate biofilm and reducing 
sputum viscosity in P. aeruginosa  brought into light these important conclusion [132]. 

Microbes responsible for forming alginate biofilm for example P. aeruginosa itself express endogenous alginate lyase 
activity. The reason behind the persistence of alginate even in the presence of alginate lyase can be attributed to the 
harsh environment in the lungs of CF patients or inhibitory components which either decrease or inhibit endogenous 
alginate lyase activity. 
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When the sample sputum of patients were treated with exogenous alginate lyase, about 15% of the sample involved in 
studies shows disruption of alginate biofilm and regarded as alginate lyase sensitive whereas the rest which were not 
affected were termed as alginate lyase insensitive. 

However, by further analyzing alginate lyase insensitive patients, it was observed that the inhibition of enzyme activity 
in patient’s sample may be due to the following reasons: - 

 Production of antibodies in the patient, against the source from which alginate lyase was extracted. 

 Proteolytic enzymes may be secreted by pathogens present in infected lungs.  

 Molecules like polysaccharides may compete with alginate for the active site of the enzyme. 

Sputum samples were also analyzed for the presence of metal ions and many divalent ions, as their presence in the 
samples seem to affect the activity of the enzyme. The samples were consistent in the presence of Zn2+, Mg2+ , Ca2+ in 
alginate lyase insensitive sample though Mg2+ reported to help in enhancing the enzyme activity. Electron microscopy 
images indicate that the presence of increased level of both bound and free divalent zinc and calcium ions in sputum 
form complex with alginate and brings about changes in its structure thereby inhibiting alginate lyase activity. 

12.1. Increased efficacy of antibiotic killing of mucoid P. aeruginosa by alginate lyase 

The efficacy of treatment involving alginate lyase alone and in combination with antibiotics was compared in a study 
conducted using 16 biofilms, which were treated with gentamycin and ceftazidime separately. A decline in non-mucoid 
strain was observed with gentamycin treatment and after 168 h, no bacteria were present in the biofilm. However, 
bacteria survived in the case of mucoid strains of P. aeruginosa under similar conditions [28]. When all biofilm culture 
were incubated with gentamicin along with alginate lyase, bacterial count  falls in those containing alginate lyase and 
after 120 h incubation, no bacteria was detected in any of the biofilms treated with the combined formulation of 
gentamicin and alginate lyase [28]. 

12.2. Coadministration of alginate lyase and Dnase along with free or liposomal aminoglycosides 

Presence of actin, mucin, extracellular DNA and alginate biofilm prevents antibiotic diffusion in CF patients. In order to 
evaluate the potential of DNase and/or alginate lyase with conventional and encapsulated liposomal aminoglycosides 
(mainly tobramycin, amikacin and gentamycin) in eradicating alginate biofilm mucoid (PA-489121) and non-mucoid 
(PA-489122 and ATCC 27853) clinical isolates of P. aeruginosa were used [133]. The biofilm was formed on Calgary 
biofilm device (CBD) plates .The non-mucoid ATCC 27853 biofilm was treated with both conventional and liposomal 
aminoglycosides formulation. Mimium Biofilm Eradication Concentration (MBEC) was observed to increase 16-64 folds 
in comparison to MIC in case of conventional aminoglycoside whereas the increase was 8-32 fold for encapsulated 
aminoglycosides. However, the treatment of  biofilm by combination of alginate lyase and antibiotics, MBECs for 
conventional aminoglycosides  reduced 2-8 folds in comparison to MIC and 0-4 folds reduction was observed in case of 
liposomal antibiotics. An increase in MBECs in case of treatment of  mucoid PA-489121 biofilms, with encapsulated and 
conventional aminoglycosides was found to be 64-256 and 128-512 fold in comparison to MICs, respectively. On 
addition of alginate lyase MBECs for conventional and liposomal aminoglycosides decrease by 4-8 folds. The MBECs of 
PA-489122 biofilm was increased by 8-32 folds for conventional and 16-128 fold for encapsulated aminoglycosides. 
However, in this case with the addition of alginate lyase no significant change was observed. 

12.3. Effect of DNase and alginate lyase on CF sputum 

Although biofilm was not completely eradicated with treatment of DNases and alginate lyase but a noticeable decrease 
in viable bacterial count was observed. However, on keeping the concentration of DNase and alginate lyase at optimum 
level and with increase in antibiotic concentration, a decrease in cfu/ml was observed in comparison to antibiotic 
treatment alone. Further, no difference in bactericidal activity was found with use of free and liposomal antibiotics 
except with gentamicin and liposomal combination. Co-administration of tobramycin with alginate lyase and DNase 
found to decrease cfu/ml. Additions of DNase decrease amakacin activity in free or liposomal form, whereas 
combination of DNase and alginate lyase increases the activity of free amikacin but not with liposomal amikacin. 

12.4. Reduction in the immunogenicity and enhancement of catalytic activity of alginate lyase 

Alginate lyase has been proved to be an important biotherapeutic agent but being a product of a foreign source (mainly 
bacteria), its administration in human body induce immunogenicity. Experiments were conducted to develop a 
polyethylene glycol conjugates of alginate lyase to reduce its immunogenicity inside the patients as well as to enhance 
its catalytic function [134]. They took A1-III alginate lyase from Sphingomonas sp. in study and cysteine residues was 
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incorporated at 5 different available positions in order to prevent enzyme inactivation. An orthogonal handle was 
formed to avail the site-specific PEG attachment. PEG is activated by treatment using maleimide for PEGylation. 

The 5 of the PEG variants (S32C-his-PEG, A53C-his-PEG, A270C-his-PEG and A328C-his-PEG , A41C-his-PEG were found 

to exhibit catalytic activity (Vmax/Km) greater than or equal to the wild type histine tagged version of the enzyme. The 

PEG conjugated enzyme has 60% more Vmax with >2 times increases in catalytic efficiency compared to wild type 
histidine tagged version. The A53C-his-PEG was found to be 80% more effective with respect to alginate (therapeutic 
target) as compared to wild type for bacterial biofilm disruption. The PEG variant of the enzyme showed approximately 
60-90% decrease in immunogenicity when reacted with anti-A-III Ig antibodies and it bound to considerably lower 
fraction of human Scfv antibody library in comparison to wild type. The PEG conjugates of the enzyme shown to remove 
more than 90% of mucoid biofilms which was estimated to be 15% more efficient as compared to wild type. The high 
catalytic efficiency and low immunogenicity in A53-HIS–PEG version of alginate lyase may prove to be a promising 
candidate for applications especially for alginate biofilm degradation [134]. 

However, an extensive study was conducted to contradict the mechanism of enzymatic degradation of alginate by 
alginate lyase followed by destruction of biofilms. It was observed from the study that the alginate lyase action on 
biofilm and their contribution in increasing the efficiency of antibiotics is not related to their catalytic activity [135]. 
The alginate lyase from Sphingomonas sp. (A1-III) and its hexahistidine tagged variant (A1-III-His) were purified and 
used. Catalytic efficiency of both the enzyme on the alginate purified from P. aeruginosa doesn’t show any major 
difference. 48% reduction in bacterial count was observed when mucoid FRD1 biofilm were treated with A1-III-His 
along with tobramycin. Whereas, treatment conducted only with A1-III-His enzyme results in 40% reduction which can 
be correlated precisely to alginate degradation. However when stand alone treatment of A1-III-His was given to non-
mucoid  P. aeruginosa strain SMC406, bacterial cells viability decreased by 40% which were unpredictable because 
SMC406 was a non-mucoid strain and it does’t synthesize alginate. Ideally it should be unaffected by the treatment with 
alginate lyase, but on the contrary alginate lyase successfully decreased the count of non mucoid  P. aeruginosa too. 

Double point mutations were performed by targeting two of the active sites of A1-III-His and A1-DM-His. The mutant 
did not exhibit any catalytic activity on brown seed weed alginate, even at higher enzyme concentration. However, the 
mutant effectively reduce biofilm by 25% and the biofilm signals were reduced to background level when treatment 
involves mutant enzyme in combination with tobramycin [135]. Hence this study makes a very contradictory suggestion 
that antibiotic synergy and biofilm disruption are not essentially related with alginate lyase activity. 

12.5. Cross linked enzyme aggregate to overcome the limitations in oral administration 

Attempts have been made to develop an aggregate of alginate lyase cross linked with glutaraldehyde to overcome the 
limitations faced during oral administration of the enzyme [136]. Any enzymes suffer frequent inactivation due to the 
high acidic conditions of the gastric environment. The alginate lyase extracted from Sphingobacterium multivoram was 
co-immobilized with ciprofloxacin in the form of a capsule composed of biopolymeric microsphere. This combination 
helps in reducing viscosity of the CF sputum and promotes rapid antibiotic diffusion [41]. The major hurdles in the oral 

administration of such formulation include enzyme denaturation above 37oC and below pH of 3. Enzymes were also 
found sensitive to the formulation constituents [41]. Cross link enzyme aggregates were synthesized using 
glutaraldehyde along with bovine serum albumin to minimize the denaturing effect of glutaraldehyde. Cross linked 
enzyme yield increased by 4.5% with the use of bovine serine albumin, where cross linking enzyme in combination with 
low methoxy pectin, the cross linked enzyme yield increased by 14.7%. Cross linked alginate lyase formulation with 
bovine serum albumin and low molecular weight pectin when incubated under conditions, pH 1.2-8.2 which will 
otherwise denature the native enzyme. Cross-linked enzyme was found to active even at a pH of 3.0 and activity is 
reduced by only 30%, when incubated at pH 1.2 and 2.0, under the same condition. On the contrary activity of the native 
enzyme was reduced by 60% at pH 4 and it becomes inactivated when incubated at pH below 3. 

On accounts of thermal stability, cross-linked alginate lyase have shown 50% higher activity than native enzyme at 40oC, 

70% higher activity at 45oC and 10% higher activity when incubated at 60oC. The activity of cross-linked enzyme, 

incubated at pH 1.2 (gastric environment) and temperature 40-45oC (body temperature of patient having fever) was 
measured in order to mimic the internal environment of patient suffering from CF. These condition caused denaturation 

of the native enzyme but the cross linked enzyme showed 52.6±5.0% and 43.0±2.1% residual activity at 40 and 45oC, 
respectively. The concentration of alginate in CF subjects was reported to be 2% w/v and cross-linked enzyme was 
efficient in viscosity reduction of alginate solution by 25%. Hence, the cross-linked enzyme can be considered as a 
potential alternative of native alginate lyase as biotherapeutic agent. It has been also suggested that due to 
comparatively high stability of cross-linked aggregate than free enzyme, cross-linked alginate layse has the potential 



Kanwar et al. / World Journal of Biology Pharmacy and Health Sciences, 2020, 02(03), 058–075 

68 
 

for oral administration taking into consideration various obstacles that can be encountered during oral administration 
[136]. 

13. Future prospects  

Enzymatic treatment holds a chance to be more effective and beneficial than gene therapy treatment in the near future 
with certain advancement because the mechanism of action and the results of enzyme based treatment are more 
predictable in comparison to unpredictable outcomes of genetic treatments. It has an added advantage of being cost 
effective and do not pose any potent threat to the patient’s body if the treatment goes ineffective which is not the case 
with other treatments used currently. The catalytic and non-catalytic efficiency of alginate lyase has been investigated 
and proved to be effective against P. aeruginosa biofilm which is the main causative agent of chronic infection in CF 
patients. The problems which need to be addressed in order to make them more effective than the existing one include 
focusing on reducing its immunogenicity with the development of novel conjugates and efforts should be made to 
discover new sources with greater enzyme stability which can withstand varying environment condition within the 
patient’s body. Moreover, the current enzyme therapies used in combination with antibiotics can be made the target 
oriented in order to increase the efficacy of the treatment. 

14. Conclusion 

The average life expectancy of the CF patient in US is 40 years whereas in Canada and UK it is 44 years or more. Advance 
treatments no doubts helped in extending the life span, however due to cost related issues and non-availability of 
advance treatments like CFTR modulator to the patients in under-developed or developing countries makes treatment 
very difficult and most of the patients die in their early teens. Moreover, in spite of availability of advance treatments at 
genetic levels, fatality rate accounts for 90% in case of the CF patients. The only measure left in case of chronic stage CF 
is a lung transplant, which demands for the urgent development of novel treatments, which should increase person’s 
life expectancy complimented with lesser complications, reduced sufferings along with an eye on ethical concerns. 
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