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Abstract 

The histamine H3 receptor binding affinities of cyclohexylamine derivatives has been analysed with the topological and 
molecular features from Dragon software. Analysis of the structural features in conjunction with the biological 
endpoints in combinatorial protocol in multiple linear regression (CP-MLR) led to the identification of 26 descriptors 
for modelling the activity. The study clearly suggested the role of atomic properties such as mass, electronegativity or 
charge content, polarizability, atomic van der Waals volume, average valence connectivity index chi-5 and absence of 
number of acceptor atoms for H-bonds (N, O, F) type functionality to optimise the histamine H3 receptor binding affinity 
of titled compounds. The models developed and the participating descriptors advocate that the substituent groups of 
the cylohexylamine moiety hold scope for further modification in the optimization of the H3 receptor binding affinity.  

Analysis of these descriptors in partial least squares (PLS) highlighted their relative significance in modulating the 
biological response. The selected descriptors are enriched with information corresponding to the activity when 
compared to the remaining ones. Applicability domain analysis revealed that the suggested model matches the high 
quality parameters with good fitting power and the capability of assessing external data and all of the compounds was 
within the applicability domain of the proposed model and were evaluated correctly.  

Keywords: QSAR; Histamine H3 receptor; Binding affinity; Combinatorial protocol in multiple linear regression (CP-
MLR) analysis; PLS; Dragon descriptors; Cyclohexylamine derivatives 

1. Introduction

The histamine H3 receptor (H3R) which is a G-protein-coupled receptor was discovered by Arrang et al. [1] in 1983 and 
cloned by Lovenberg et al. [2] in 1999. Extensive studies and reviews on H3R revealed that this receptor mostly controls 
the histamine biosynthesis and release via a negative-feedback process [3-10]. It is found that the release of several 
other neurotransmitters such as acetylcholine [11,12], noradrenaline [13], dopamine [14] and serotonin [15] regulated 
by H3R. In the brain the release of waking and pro-cognitive action associated histamine is triggered by inverse agonists 
rather than neutral antagonists of H3R [16]. Based on these observations H3R inverse agonists might be useful in several 
CNS-related disorders that includes narcolepsy, attention deficit hyperactivity disorder (ADHD), schizophrenia, 
Alzheimer’s disease, and excessive daytime sleepiness in obstructive sleep apnea or Parkinson’s disease.  

In search of potent H3R inverse agonists, devoid of hERG and CYP450 interactions with favorable CNS penetration and 
pharmacokinetic profile, cyclohexylamine based derivatives have been reported by Labeeuw and coworkers [17]. The 
aim of present communication is to establish the quantitative relationships between the reported binding affinities and 
molecular descriptors unfolding the substitutional changes in titled compounds. 
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2. Material and methods 

2.1. Data-set 

For present work the reported sixty cyclohexylamine based derivatives have been considered as the data set [17]. The 
general structure of these compounds is represented in Figure 1 and structural variations are mentioned in Table 1.  

 
 

Figure 1 General structure of cyclohexylamine based derivatives 

These compounds were evaluated for their histamine H3 binding affinity by displacement of [125I]-iodoproxyfan (IPX) 
binding to membranes of stably transfected HEK-293 cells [18]. The binding affinity has also been reported in Table 1 
[17]. The same is expressed as pKi on a molar basis and considered as the dependent variable for the present 
quantitative analysis. The data set was sub-divided into training set to develop models and test set to validate the models 
externally. The test set compounds which were selected using an in-house written randomization program, are also 
mentioned in Table 1. 

Table 1 Structural variations and observed H3R binding affinity of cyclohexylamine derivatives 

Cpd. R pKi(M)a 

Obsd. Calculated 

Eq. (4) Eq. (5) Eq. (6) Eq. (7) PLS 

1 

O

S

 

8.85 8.41 8.75 8.59 8.56 8.68 

2b 

O

O

 

8.30 8.28 8.10 8.16 8.04 8.31 

3 

O

O

 

8.05 8.69 8.42 8.28 8.32 8.36 

4b 

O

N
H

N

 

8.32 8.16 8.11 8.35 8.25 8.30 

5b 

O

NN

 

8.74 8.42 8.61 8.58 8.70 8.60 
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6b 
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O
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8.60 8.08 8.07 8.36 8.19 8.11 

7b 

O

O

N

 

8.44 7.88 8.10 8.11 8.22 8.09 
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O  

8.80 9.18 9.17 9.05 8.93 8.98 
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O  

8.55 8.80 8.57 8.23 8.43 8.61 
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N

 

8.31 8.38 8.34 8.42 8.53 8.51 

11 

O

O

 

8.28 8.17 8.36 8.41 8.40 8.30 

12 

O

O

 

8.08 8.39 8.43 8.50 8.56 8.45 

13 

O

O

O

 

8.44 8.53 8.15 8.21 8.26 8.58 

14 

O
OCH3

 

8.66 8.66 8.69 8.48 8.47 8.92 

15b 

O O N

 

8.80 9.11 8.84 9.22 8.56 8.84 

16 

O

O

O

 

7.98 7.79 7.96 7.95 7.92 7.79 
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17 

O

N

 

9.70 9.55 9.54 9.42 9.53 9.50 

18 

O

O

 

8.77 8.44 8.35 8.51 8.48 8.58 

19 

O

N

 

9.52 9.55 9.54 9.42 9.53 9.50 

20 

O

N

 

9.68 9.55 9.54 9.42 9.53 9.50 

21 

O

N

 

9.47 9.52 9.29 9.40 9.30 9.37 

22 

O

N

 

9.60 9.52 9.29 9.40 9.30 9.37 

23 

O

N

 

9.48 9.52 9.39 9.36 9.38 9.46 

24 

O

N

 

9.60 9.52 9.39 9.36 9.38 9.46 

25 

O

N

 

9.19 9.37 9.32 9.13 9.33 9.38 

26b 

O

N

 

9.25 9.40 9.45 9.20 9.39 9.50 

27 
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N

N

 

9.04 9.10 9.41 9.39 9.57 9.37 

28b 

O

N

N

 

9.49 9.10 9.41 9.39 9.57 9.37 



World Journal of Biology Pharmacy and Health Sciences, 2023, 13(02), 089–104 

93 

29 
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O

 

9.17 9.13 9.22 9.45 9.44 9.10 

30 
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N
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9.39 9.13 9.22 9.45 9.44 9.10 

31 
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N

OH

 

9.04 8.99 9.10 9.24 9.40 9.11 

32 

O

N

OH

 

9.24 8.99 9.10 9.24 9.40 9.11 

33 

O

N

 

9.39 9.39 9.57 9.57 9.50 9.75 

34 

O

N

 

9.77 9.39 9.57 9.57 9.50 9.75 

35 

O

NH

 

9.54 9.41 9.29 9.44 9.23 9.40 

36b 

O

NH

 

9.59 9.41 9.29 9.44 9.23 9.40 

37 

O

NH

 

9.28 9.32 9.26 9.16 9.19 9.12 

38 

O

NH

 

9.19 9.32 9.26 9.16 9.19 9.12 

39b 

O

NH

 

8.49 9.20 9.06 9.09 9.10 9.05 
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8.26 8.72 8.69 8.59 8.64 8.44 

41 
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7.64 7.65 7.95 7.81 7.90 7.63 
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HO

 

8.17 8.35 8.22 8.28 8.17 8.40 
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HO

 

8.07 7.86 7.84 7.87 7.82 7.88 
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HO

 

8.16 8.35 7.92 8.02 7.77 8.08 

45 
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HO

 

8.85 8.89 9.03 9.08 9.05 9.06 
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HO

 

9.13 9.09 9.37 9.09 9.03 9.15 
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HO

 

9.27 9.08 9.12 9.28 8.89 9.21 

48 
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HO

 

7.74 7.89 7.80 8.10 7.80 8.01 

49 

O

HO

 

9.09 9.16 9.15 9.33 9.11 9.00 
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HO

 

8.41 8.54 8.46 8.53 8.42 8.63 
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O

HO

O

 

8.39 8.09 7.85 8.06 8.08 8.16 
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52 

O

HO

 

8.54 8.70 8.65 8.57 8.43 8.44 

53 

O

HO

O

 

7.89 8.13 8.01 7.98 8.08 7.92 

54 

O

OH

 

7.49 7.78 7.88 7.94 7.81 7.66 

55 

O

OH

 

8.48 8.32 8.45 8.49 8.57 8.23 

56b 

O

OH

 

8.40 8.38 8.74 8.54 8.83 8.54 

57b 

O

OH

 

7.82 7.61 8.00 7.80 8.02 7.77 

58b 

O

OH

 

7.72 7.95 7.97 7.84 8.04 7.95 

59 

O

OH

 

8.59 7.95 7.97 7.84 8.04 7.95 

60 

O OH 

 

8.72 8.70 8.63 8.53 8.73 8.60 

 aReference [17]; bCompound included in test set. 

2.2. Molecular descriptors  

The structures of the compounds (Table 1), under study, have been drawn in 2D ChemDraw [19] and were converted 
into 3D objects using the default conversion procedure implemented in the CS Chem3D Ultra. The generated 3D-
structures of the compounds were subjected to energy minimization in the MOPAC module, using the AM1 procedure 
for closed shell systems, implemented in the CS Chem3D Ultra. This will ensure a well defined conformer relationship 
across the compounds of the study. All these energy minimized structures of respective compounds have been ported 
to DRAGON software [20] for computing the descriptors corresponding to 0D-, 1D-, and 2D-classes.  

2.3. Development and validation of model 

The combinatorial protocol in multiple linear regression (CP-MLR) [21-25] and partial least squares (PLS) [26-28] 
procedures have been used in the present work for developing QSAR models. The CP-MLR is a “filter”-based variable 
selection procedure, which employs a combinatorial strategy with MLR to result in selected subset regressions for the 
extraction of diverse structure–activity models, each having unique combination of descriptors from the generated 
dataset of the compounds under study. The embedded filters make the variable selection process efficient and lead to 
unique solution. Fear of “chance correlations” exists where large descriptor pools are used in multilinear QSAR/QSPR 
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studies [29,30]. Furthermore, in order to discover any chance correlations associated with the models recognized in CP-
MLR, each cross-validated model has been put to a randomization test [31,32] by repeated randomization of the activity 
to ascertain the chance correlations, if any, associated with them. For this, every model has been subjected to 100 
simulation runs with scrambled activity. The scrambled activity models with regression statistics better than or equal 
to that of the original activity model have been counted, to express the percent chance correlation of the model under 
scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within the study domain. For each 
model, derived by involving n data points, a number of statistical parameters such as r (the multiple correlation 
coefficient), s (the standard deviation), F (the F ratio between the variances of calculated and observed activities), and 
Q2LOO (the cross-validated index from leave-one-out procedure) have been obtained to access its overall statistical 
significance. In case of internal validation, Q2LOO is used as a criterion of both robustness and predictive ability of the 
model. A value greater than 0.5 of Q2 index suggests a statistically significant model. The predictive power of derived 
model is based on test set compounds. The model obtained from training set has a reliable predictive power if the value 
of the r2Test (the squared correlation coefficient between the observed and predicted values of compounds from test set) 
is greater than 0.5.  

2.4. Applicability Domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model is valid only within 
its training domain and new compounds must be assessed as belonging to the domain before the model is applied. The 
applicability domain is assessed by the leverage values for each compound [33]. The Williams plot (the plot of 
standardized residuals versus leverage values, h) can then be used for an immediate and simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
applicability domain is established inside a squared area within ± x (s.d.) and a leverage threshold h*. The threshold h* 
is generally fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number of model parameters) 
whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a high leverage value (h > h*). On the 
other hand, when the leverage value of a compound is lower than the threshold value, the probability of accordance 
between predicted and observed values is as high as that for the training-set compounds. 

3. Results and discussion 

3.1. QSAR results 

For the compounds in Table 1, a total number of 501 descriptors belonging to 0D- to 2D- classes of DRAGON have been 
computed. Prior to model development procedure, all those descriptors that are inter-correlated beyond 0.90 and 
showing a correlation of less than 0.1 with the biological endpoints (descriptor versus activity, r < 0.1) were excluded. 
This procedure has reduced the total descriptors from 501 to 120 as relevant ones to explain the biological actions of 
titled compounds and these were subjected to CP-MLR analysis with default “filters” set in it. The descriptors have been 
scaled between the intervals 0 to 1 [34] to ensure that a descriptor will not dominate simply because it has larger or 
smaller pre-scaled value compared to the other descriptors. In this way, the scaled descriptors would have equal 
potential to influence the QSAR models. In multi-descriptor class environment, exploring for best model equation(s) 
along the descriptor class provides an opportunity to unravel the phenomenon under investigation. In other words, the 
concepts embedded in the descriptor classes relate the biological actions revealed by the compounds.  

The 60 compounds were divided into training-set and test-set. Fifteen compounds (25% of total population) have been 
selected for test-set. The identified test-set was then used for external validation of models derived from remaining 
fourty five compounds in the training-set. The squared correlation coefficient between the observed and predicted 
values of compounds from test-set, r2Test, was calculated to explain the fraction of explained variance in the test-set 
which is not part of regression/model derivation. It is a measure of goodness of the derived model equation. A high r2Test 
value is always good. But considering the stringency of test-set procedures, often r2Test values in the range of 0.5 to 0.6 
are regarded as logical models. Following the strategy to explore only predictive models, CP-MLR resulted into 02, 54 
and 55 models in one, two and three descriptors, respectively. The generated models in one, two and three descriptors, 
all having r2Test<0.5, for the CDK8 inhibitory activity. The selected models are mentioned in Table 2.  

The signs of the regression coefficients have indicated the direction of influence of explanatory variables in above 
models. The positive regression coefficient associated to a descriptor will augment the activity profile of a compound 
while the negative coefficient will cause detrimental effect to it. 
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Table 2 Highest significant models in one, two and three parameters derived for training set through CP-MLR for 
histamine H3 receptor binding affinity 

Model r s F Q2LOO r2Test  Eq. 

pKi = 8.145 +1.227(0.138)BELp5 0.803 0.369 78.578 0.610 0.807 (1) 

pKi = 7.663 +1.155(0.115)BELp5 +0.937(0.202)GATS7e 0.875 0.304 68.672 0.724 0.806 (2) 

pKi = 8.470 +1.019(0.144)BELp5 +0.854(0.239)JGI6 

 -1.507(0.247)nHAcc 

0.903 0.272 60.811 0.766 0.561 (3) 

 
In above model Eqs., (1-3), the descriptor BELp5 is BCUT class descriptor. The other participating descriptors are 
GATS7e (2D autocorrelation class), JGI6 (Galvez topological charge index) and nHAcc (functional group). The positive 
sign of regression coefficients of descriptors BELp5 (atomic polarizabilities weighted lowest eigenvalue n.5 of Burden 
matrix), GATS7e (atomic Sanderson electronegativities weighted Geary autocorrelation of lag 7) and JGI6 (mean 
topological charge index of order 6) suggested that a higher value of these descriptors would be beneficial to augment 
the H3R binding affinity. On the other hand, absence of number of acceptor atoms for H-bonds (N, O, F) type functionality 
(descriptor nHAcc) in a molecule would be supportive to the H3R binding affinity. 

Table 3 Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in 
modeling the H3R binding affinities 

Descriptor class Descriptor (physical meaning), avg reg coeff (incidence)  

Constitutional Me (mean atomic Sanderson electronegativity scaled on Carbon atom), -1.029(42) 

Topological DELS (molecular electrotopological variation), -0.916(8); X5Av (average valence connectivity 
index chi-5), -0.661(4); BLI (Kier benzene-likeliness index), -0.771(9); CIC5 (complementary 
information content of 5-order neighbourhood symmetry), 0.429(2); BIC5 (bond information 
content of 5-order neighbourhood symmetry), -0.379(7); SEigm (Eigenvalue sum from mass 
weighted distance matrix), -0.668(2); piPC10 (molecular multi path count of order 10), 
0.902(14); T(O..O) (sum of topological distances between O..O),  

-0.505(5) 

BCUT BELp5 (atomic polarizabilities weighted lowest eigenvalue n.5 of Burden matrix), 0.946(59); 
BELp7 (atomic polarizabilities weighted lowest eigenvalue n.7 of Burden matrix), 0.568(10) 

Galvez 
topological 
charge indices 

GGI1 (topological charge index of order 1), 0.848(2); GGI10 (Galvez topological charge index 
of order 10), -0.854(2); JGI6 (mean topological charge index of order 6), 0.800(3) 

2D 
autocorrelations 

 

MATS6m (atomic masses weighted Moran autocorrelation of lag 6), 0.440(2); MATS8m 
(atomic masses weighted Moran autocorrelation of lag 8), -0.316(1); MATS2v (atomic van der 
Waals volume weighted Moran autocorrelation of lag 2), 0.442(12); MATS2e (atomic 
Sanderson electronegativities weighted Moran autocorrelation of lag 2), -0.864(1); GATS6v 
(atomic van der Waals volume weighted Geary autocorrelation of lag 6), -0.288(1); GATS3e 
(atomic Sanderson electronegativities weighted Geary autocorrelation of lag 3), 
0.820(2);GATS5e (atomic Sanderson electronegativities weighted Geary autocorrelation of 
lag 5), -0.538(14); GATS7e (atomic Sanderson electronegativities weighted Geary 
autocorrelation of lag 7), 0.547(5); GATS8p (atomic polarizabilities weighted Geary 
autocorrelation of lag 8), 0.507(8) 

Functional 
groups 

nNR2 (number of tertiary aliphatic amines), 0.533(1); nHAcc (number of acceptor atoms for 
H-bonds (N, O, F), -0.941(15) 

Properties MLOGP (Moriguchi octanol-water partition coefficient, logP), 0.692(5)  
aThe descriptors are identified from the four parameter models for activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-
3 as 0.896 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 45 compounds. bThe average regression coefficient of the descriptor corresponding to all 

models and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 
models.  
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Considering the number of observation in the dataset, models with up to four descriptors were explored. It has resulted 
in 59 four-parameter models with test set r2> 0.50. These models (with 120 descriptors) were identified in CP-MLR by 
successively incrementing the filter-3 with increasing number of descriptors (per equation). For this, the optimum r-
bar value of the preceding level model has been used as the new threshold of filter-3 for the next generation. These 
models have shared 26 descriptors among them. All these 26 descriptors along with their brief meaning, average 
regression coefficients, and total incidence are listed in Table 3, which will serve as a measure of their estimate across 
these models.  

Following are the selected four-descriptor models for the histamine H3 receptor binding affinitiesemerged through CP-
MLR. 

pKi= 7.814 +1.027(0.122)BELp5 +0.714(0.176)BELp7 +0.616(0.169)GATS8p -1.113(0.205)nHAcc 

n = 45, r = 0.921, s = 0.250, F = 56.114, Q2LOO = 0.799, Q2L5O = 0.804, r2Test = 0.687  …….(4) 

pKi= 8.460 -0.864(0.207)Me +1.045(0.123)BELp5 +0.512(0.138)MATS2v -0.712(0.244)nHAcc 

n = 45, r = 0.921, s = 0.250, F = 56.017, Q2LOO = 0.796, Q2L5O = 0.791, r2Test = 0.762  …….(5) 

pKi= 8.803 -1.316(0.204)Me-0.842(0.244)X5Av +0.986(0.107)BELp5 +0.598(0.169)GATS8p 

n = 45, r = 0.919, s = 0.253, F = 54.433, Q2LOO = 0.797, Q2L5O = 0.787, r2Test = 0.837  …….(6) 

pKi= 8.432 -1.011(0.190)Me +0.904(0.109)BELp5 +0.451(0.141)MATS2v -0.484(0.179)GATS5e 

n = 45, r = 0.919, s = 0.253, F = 54.378, Q2LOO = 0.795, Q2L5O = 0.776, r2Test = 0.737  ….…(7) 

These models have accounted for nearly 85% variance in the observed activities. In the randomization study (100 
simulations per model), none of the identified models has shown any chance correlation. The values greater than 0.5 of 
Q2 index is in accordance to a reasonable robust QSAR model. The pKi values of training set compounds calculated using 
Eqs. (4) to (7) have been included in Table 1. The models (4) to (7) are validated with an external test set of 15 
compounds listed in Table 1. The predictions of the test set compounds based on external validation are found to be 
satisfactory as reflected in the test set r2 (r2Test) values and the same is reported in Table 1. The plot showing goodness 
of fit between observed and calculated activities for the training and test set compounds is given in Figure 2. 

The newly appeared descriptors in above models are BELp7 (BCUT class), Me (constitutional class), GATS8p, GATS5e 
and MATS2v (2D autocorrelation class) and X5Av (topological class). The descriptors BELp7, GATS8p and MATS2v have 
shown positive correlation to the activity whereas descriptors Me, X5Av and GATS5e have correlated negatively to the 
activity. The signs of regression coefficients advocated that higher values of atomic polarizabilities weighted lowest 
eigenvalue n.7 of Burden matrix (descriptor BELp7), atomic polarizabilities weighted Geary autocorrelation of lag 8 
(descriptor GATS8p) and atomic van der Waals volume weighted Moran autocorrelation of lag 2 (descriptor MATS2v) 
and lower values of mean atomic Sanderson electronegativity scaled on Carbon atom (descriptor Me), average valence 
connectivity index chi-5 (X5Av) and atomic Sanderson electronegativities weighted Geary autocorrelation of lag 5 
(descriptor GATS5e) would be helpful to augment the histamine H3 receptor binding affinity.  

A partial least square (PLS) analysis has been carried out on these 26 CP-MLR identified descriptors, mentioned in Table 
3, to facilitate the development of a “single window” structure–activity model. For the purpose of PLS, the descriptors 
have been autoscaled (zero mean and unit SD) to give each one of them equal weight in the analysis. In the PLS cross-
validation, four components are found to be the optimum for these 26 descriptors and they explained 88.17% variance 
in the activity. The MLR-like PLS coefficients of these 26 descriptors are given in Table 4. 
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Figure 2 Plot of observed versus caculated pKi values for training- and test-set compounds for histamine H3 receptor 
binding affinity 
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Table 4 PLS and MLR-like PLS models from the 26 descriptors of four parameter CP-MLR models for histamine H3 
receptor binding affinity 

A: PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 -0.194(0.012) 

Component-2 -0.101(0.017) 

Component-3 0.044(0.016) 

Component-4 0.083(0.024) 

Constant 8.816 

B: MLR-like PLS equation 

S. 
No. 

Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order  S. 
No. 

Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order  

1 Me -0.484 -0.091 3 14 JGI6 0.174 0.035 10 

2 DELS -0.017 -0.002 26 15 MATS6m 0.366 0.057 5 

3 X5Av -0.146 -0.023 17 16 MATS8m 0.131 0.029 12 

4 BLI -0.174 -0.025 16 17 MATS2v 0.121 0.027 15 

5 CIC5 0.101 0.019 19 18 MATS2e -0.319 -0.042 7 

6 BIC5 -0.055 -0.012 25 19 GATS6v -0.060 -0.013 24 

7 SEigm -0.130 -0.015 20 20 GATS3e 0.231 0.037 9 

8 piPC10 0.266 0.033 11 21 GATS5e -0.131 -0.022 18 

9 T(O..O) -0.140 -0.029 13 22 GATS7e -0.083 -0.014 23 

10 BELp5 0.523 0.156 1 23 GATS8p 0.157 0.027 14 

11 BELp7 0.386 0.077 4 24 nNR2 -0.072 -0.014 22 

12 GGI1 0.316 0.054 6 25 nHAcc -0.292 -0.042 8 

13 GGI10 -0.081 -0.015 21 26 MLOGP 0.510 0.092 2 

      Constant = 7.872 

C: PLS regression statistics Values  

n 45 

r 0.939 

s 0.220 

F 75.401 

Q2LOO 0.847 

Q2L5O 0.849 

r2Test 0.829 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original 

values;cf.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the autoscaled 
(zero mean and unit s.d.) data. 

For the sake of comparison, the plot showing goodness of fit between observed and calculated activities (through PLS 
analysis) for the training and test set compounds is also given in Figure 2. Figure 3 shows a plot of the fraction 
contribution of normalized regression coefficients of these descriptors to the activity.  
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Figure 3 Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 26 CP-MLR identified 
descriptors (Table 3) associated with histamine H3 receptor binding affinityof cyclohexylamine derivatives 

The PLS analysis has suggested BELp5 as the most determining descriptor for modeling the activity of the compounds 
(descriptor S. No. 10 in Table 4; Figure 3). The other nine descriptors in decreasing order of significance are MLOGP, 
Me, BELp7, MATS6m, GGI1, MATS2e, nHAcc, GATS3e and JGI6. The descriptors BELp5, BELp7, Me, nHAcc and JGI6 are 
part of Eqs. (1) to (7) and convey same inference in the PLS model as well. The positive influence of descriptors, MLOGP 
(Moriguchi octanol-water partition coefficient, logP), MATS6m (atomic masses weighted Moran autocorrelation of lag 
6), GGI1 (topological charge index of order 1) and GATS3e (atomic Sanderson electronegativities weighted Geary 
autocorrelation of lag 3) advocate that higher values of these descriptors would be beneficiary to the binding affinity 
whereas, a lower value of descriptor MATS2e (atomic Sanderson electronegativities weighted Moran autocorrelation of 
lag 2) would be helpful for improved activity. It is also observed that PLS model from the dataset devoid of CP-MLR 
identified 26 descriptors (Table 3) is inferior in explaining the activity of the analogues. 

3.2. Applicability domain 

On analyzing the applicability domain (AD) for the H3 receptor binding affinity in the Williams plot (Figure 4) of the 
model based on the whole data set (Table 5), No any compound has been identified as an obvious ‘outlier’ for the H3R 
binding affinity if the limit of normal values for the Y outliers (response outliers) was set as 3×(standard deviation) 
units. None of the compound was found to have leverage (h) values greater than the threshold leverage (h*=0.333). For 
both the training-set and test-set, the suggested model matches the high quality parameters with good fitting power 
and the capability of assessing external data. Furthermore, all of the compounds were within the applicability domain 
of the proposed model and were evaluated correctly. 

Table 5 Models derived for the whole data set (n = 60) in descriptors identified through CP-MLR for histamine H3 
receptor binding affinity 

Model r s F Q2LOO Eq. 

pKi = 7.898 +1.049(0.121)BELp5 +0.595(0.168)BELp7 
+0.428(0.160)GATS8p -0.884(0.194)nHAcc 

0.905 0.267 62.394 0.779 (4a) 

pKi = 8.414 -0.727(0.182)Me +1.063(0.115)BELp5 +0.416(0.127)MATS2v 

-0.573(0.229)nHAcc  

0.912 0.257 68.140 0.797 (5a) 

pKi = 8.844 -1.274(0.189)Me-0.837(0.214)X5Av +0.982(0.094)BELp5 

 +0.476(0.151)GATS8p 

0.918 0.248 74.402 0.810 (6a) 

pKi = 8.376 -0.828(0.169)Me +0.973(0.104)BELp5 +0.331(0.129)MATS2v 

-0.349(0.165)GATS5e  

0.909 0.261 65.733 0.791 (7a) 
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Figure 4 Williams plot for the training-set and test-set for H3R binding affinity of compounds in Table 1. The 
horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (=0.333) 

4. Conclusion 

The histamine H3 receptor binding affinities of cyclohexylamine derivatives has been analysed with the topological and 
molecular features from Dragon software. Analysis of the structural features in conjunction with the biological 
endpoints in combinatorial protocol in multiple linear regression (CP-MLR) led to the identification of 26 descriptors 
for modelling the activity. The study clearly suggested the role of atomic properties such as mass, electronegativity or 
charge content, polarizability, atomic van der Waals volume, average valence connectivity index chi-5 and absence of 
number of acceptor atoms for H-bonds (N, O, F) type functionality to optimise the histamine H3 receptor binding affinity 
of titled compounds. The models developed and the participating descriptors advocate that the substituent groups of 
the cylohexylamine moiety hold scope for further modification in the optimization of the H3 receptor binding affinity.  

Analysis of these descriptors in partial least squares (PLS) highlighted their relative significance in modulating the 
biological response. The selected descriptors are enriched with information corresponding to the activity when 
compared to the remaining ones. Applicability domain analysis revealed that the suggested model matches the high 
quality parameters with good fitting power and the capability of assessing external data and all of the compounds was 
within the applicability domain of the proposed model and were evaluated correctly.  
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