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Abstract 

Artificial Intelligence (AI) is transforming the medical sector by enhancing diagnosis accuracy, improving treatment 
outcomes, optimizing healthcare workflows and advancing medical research. Its ability to analyze complex data and 
assist healthcare professionals has the potential to revolutionize patient care and drive innovation in the field of 
medicine. Its ability to analyze the amounts of data, identify patterns and make predictions has significantly advanced 
these fields, leading to improved healthcare outcomes and fostering new avenues for medical research and 
development. In this review, various applications of AI techniques in healthcare, such as drug design, disease diagnosis, 
personalized treatment, gene editing and medical education. AI plays a crucial role in disease diagnosis by analyzing 
medical images, genomic data and patient records, were discussed. AI is transforming medical education by providing 
personalized and interactive learning experiences. AI algorithms can efficiently analyze large genomic datasets, 
identifying potential target genes and predicting the outcomes of genetic modifications. 
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1. Introduction

Artificial Intelligence (AI) is a branch of science that combines intelligent computer programs with machine learning to 
provide improved outcomes in a variety of scientific and academic domains. Its goals include data analysis, system 
development and correct analysis. Computational intelligence and statistical models are combined in AI technology. 
Although redundancy issues are frequently linked to developments in AI applications, their effectiveness benefits the 
sector. By using AI in a variety of pharmaceutical industry domains, including drug discovery and development, drug 
repurposing, increasing pharmaceutical production, clinical trials, etc., to mention a few, it is possible to accomplish 
goals more quickly, while also decreasing the workload of human workers. AI models are useful and affordable in the 
drug development process because they can predict in vivo responses, pharmacokinetics parameters and dosing. The 
ancient drug discovery process is a long and tedious process that costs a lot of money. The identification of the lead 
molecules is a lengthy process [1]. New drug discovery processes take a minimum of 20 years. The identification of 
pharmacokinetic and pharmacodynamic properties of the new molecules is difficult for ancient drug discovery [2]. 
Target prediction and lead optimization are long processes that are cost-effective. So, 90% of new drug identification is 
a failure of the drug discovery process [3]. In a normally personalized treatment, the results vary from patient to patient 
and treatment accuracy was low. Researchers and medical professionals have recently grown increasingly conscious of 
the fact that every person's illness is unique. Due to the variability of the patient population, some patients may respond 
better to a certain therapy than others [4]. Scientists must comprehend the pathophysiology of the disease they are 
trying to treat in order to create a new therapy that works. Despite the fact that many diseases underlying biological 
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mechanisms have been discovered over the years, our understanding of diseases as a whole has not kept pace, especially 
when it comes to disorders of the nervous system. As a result, it is difficult to find effective treatment options for many 
diseases [5]. The effective treatment of patients is based on the proper diagnosis of the diseases. Disease diagnosis is 
important for the identification and differentiation of various diseases. The normal diagnosis has low accuracy and is 
time-consuming [6]. 

AI is one of the most advanced modern techniques in the medical healthcare system. AI has effectively reduced the 
lengthy process of drug discovery and its cast. It’s identified the lead molecule and target prediction for drug discovery 
in a low-time-consuming manner. AI improves personalized treatment from patient to patient [7]. AI-based algorithms 
are useful for locating underdiagnosed or undertreated individuals, unencoded diseases and unusual diseases. 
Therefore, AI illness diagnostic models offer several opportunities for patient early diagnosis [8]. AI is also used to 
educate students about healthcare and help them to improve their skills in medical education [9]. 

If current trends continue, it won't be long before machines rather than people create the medications we consume. AI-
enabled drug discovery holds enormous potential to improve access to medications and treat currently incurable 
illnesses because it promises reduced costs and faster development times. It also creates a whole variety of unresolved 
problems, such as those involving intellectual property rights, the danger of technical misuse and the ongoing 
maintenance of drug safety and efficacy in this modern period. 

Pre-clinical phases of conventional drug discovery are notoriously lengthy and expensive, spanning three to six years 
on average and costing hundreds of millions to billions of dollars. However, a variety of AI technologies are 
revolutionizing almost every step of the drug discovery process, holding great promise for changing the industry's pace 
and cost. In the target identification stage of drug discovery, artificial intelligence (AI) is being trained on massive 
datasets, such as omics datasets, phenotypic and expression data, disease associations, patents, publications, clinical 
trials, research grants and more, to understand the biological mechanisms of diseases and to identify novel proteins 
and/or genes that can be targeted to treat those diseases. By anticipating the 3D structures of targets and speeding up 
the creation of effective medications that attach to them, AI can go beyond simple target recognition. By enabling high-
fidelity molecular simulations that may be done solely on computers (i.e., in silico) without incurring the prohibitive 
expenses of conventional chemical procedures, AI is also being utilized to lessen the requirement for physical testing of 
prospective therapeutic molecules. By predicting important qualities like toxicity, bioactivity and the physicochemical 
properties of compounds, some AI systems are being utilized to avoid simulating the testing of drug candidates. 

The paradigm of traditional drug development, which has often entailed screening enormous libraries of potential 
compounds, is changing as a result of AI. Some systems must be capable of creating potential, previously undiscovered 
medicinal compounds from scratch. AI is used to rank these molecules and prioritize them for further evaluation when 
a group of promising "lead" medicinal compounds have been discovered. AI approaches beat earlier ranking techniques. 
Beyond theoretical medication design, AI is also being used to build synthesis pathways for creating fictitious drug 
molecules, occasionally suggesting changes to substances to make them more readily producible. 

2. AI in drug discovery  

The pharmaceutical industry has dramatically increased its data digitization during the last few years. However, the 
task of gathering, examining and utilizing that knowledge to resolve challenging clinical problems comes along with this 
digitalization [10]. Because AI can handle massive amounts of data with improved automation, this encourages its use 
[11]. Artificial intelligence (AI) is a technology-based system that uses a variety of cutting-edge tools and networks to 
simulate human intelligence. While not totally replacing human physical presence, it does not completely threaten to 
do so [12,13]. AI makes use of hardware and software that can analyze and learn from input data to make independent 
decisions for achieving predetermined goals. Acting in accordance with the McKinsey Global Institute, the rapid 
advances in AI-guided automation will be likely to completely change the work culture of society [14,15]. 

AI in drug discovery and development demonstrate its potential to accelerate the process, increase efficiency and 
improve success rates in bringing new drugs to market. However, it's important to emphasize that AI is a tool that 
complements the expertise of researchers and rigorous experimental validation and regulatory compliance remain 
essential in the drug development pipeline [16]. The abundance of medicinal molecules is encouraged by the broad 
chemical space, which contains more than 1060 molecules [17]. However, the drug development process is constrained 
by a lack of cutting-edge technologies, making it a time-consuming and expensive effort that can be resolved by applying 
AI [18]. The use of AI can identify hit and lead compounds, validate the drug target more quickly and optimize the design 
of the drug structure [17,19]. Despite its benefits, AI must contend with serious data difficulties such as the size, 
expansion, diversity and ambiguity of the data. Millions of molecules may be present in the data sets available to 
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pharmaceutical corporations for medication development, making them difficult for typical ML systems to handle. Large 
numbers of chemicals or straightforward physicochemical properties, such log P or log D, can be quickly predicted using 
a computational model based on the quantitative structure-activity relationship (QSAR). These models, however, are a 
long way from making accurate predictions about complicated biological characteristics like a compound's effectiveness 
and unfavorable side effects. Small training sets, incorrect experimental data in training sets and a lack of experimental 
validations are further issues QSAR-based models encounter. To address these issues, large data modeling and analysis 
based on recently established AI methodologies can be used to evaluate the safety and efficacy of pharmacological 
compounds. For absorption, distribution, metabolism, excretion and toxicity (ADMET) data sets of drug candidates, it 
demonstrated significant predictivity in comparison to conventional ML techniques [20,21]. 

The vast virtual chemical space hints to a molecular topographic map by showing molecular distributions and 
characteristics. The concept behind the chemical space visualization is to gather positional data on molecules within the 
space in order to look for bioactive compounds. As a result, virtual screening (VS) aids in the selection of suitable 
molecules for further testing. PubChem, ChemBank, DrugBank and ChemDB are a few open-access chemical databases. 

Along with structure and ligand based approaches, there are other in silico ways to virtual screen compounds from 
virtual chemical spaces that offer better profile analysis, quicker non-lead compound elimination and faster therapeutic 
molecule selection at lower cost [17]. The physical, chemical and toxicological properties are taken into account when 
choosing a lead ingredient via drug design algorithms such coulomb matrices and molecular fingerprint identification 
[22]. The desired chemical structure of a compound can be predicted using a variety of characteristics, including 
prediction models, the similarity of molecules, the molecule creation process and the use of in silico methodologies 
[19,23].  

The development of AI-based QSAR approaches, such as linear discriminant analysis (LDA), support vector machines 
(SVMs), random forests (RF) and decision trees, has been used to identify potential drug candidates using QSAR 
modeling tools [24-26]. These approaches can be used to accelerate QSAR analysis. When King et al. examined the 
capacity of six AI algorithms to rank anonymous substances in terms of biological activity with that of conventional 
techniques; they discovered a minimal statistical difference [27]. 

AI algorithms can analyze large-scale biological and chemical datasets to identify potential drug targets and validate 
their relevance to specific diseases. By integrating genomic, proteomic, and clinical data, AI can uncover novel 
therapeutic targets and prioritize them based on their potential for successful intervention [28]. 

3. AI in drug design 

3.1. Prediction of the Target Protein Structure 

While designing a drug molecule, it is essential to assign the correct target for successful treatment. Numerous proteins 
are involved in the progress of the disease and in some cases, they are overexpressed. Therefore, it is crucial to estimate 
the structure of the target protein while designing the therapeutic molecule in order to selectively target disease. 
Because the design is in accordance with the chemical environment of the target protein site, AI can help in structure-
based drug discovery by predicting the 3D protein structure. This helps to predict the effect of a compound on the target 
along with safety considerations before their synthesis or production [29]. The basic protein sequence was encoded 
and the torsional angles for each residue as well as a half-finished backbone derived from the geometric unit upstream 
of this were then taken into consideration as input and produced a novel backbone as output. The three-dimensional 
structure was the output of the final unit. The distance-based root mean square deviation (dRMSD) measure was used 
to evaluate how far the anticipated and experimental structures deviated from each other [30].  

Atomic resolution structural information of small molecules binding to drug targets offers opportunities for structure-
guided hit identification, fragment screening and ligand optimization. However, structural coverage for only 35% of the 
human proteome remains underrepresented, especially for pharmaceutically relevant protein target families like G-
protein-coupled receptors (GPCRs) and ion channels [31]. Computational structure prediction methods, such as 
homology modeling, have shown improved success in protein structure prediction even without a template structure 
[32]. DeepMind, in partnership with EMBL-EBI, has made freely available the 3D structures predicted by AlphaFold2, 
offering structural coverage for 98.5% of the human proteome. Although these developments signify advancements in 
protein structure prediction, it is too early to declare AI has cracked the protein-folding problem or its impact on drug 
discovery will be transformative [33]. 
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3.2. De novo drug design 

De novo drug design, developed 25 years ago, aims to generate new active molecules without reference compounds. 
However, it has not gained widespread use in drug discovery due to the difficulty in accessing synthetically difficult 
compounds [34]. De novo drug design as a practice is being superseded by emerging approaches as a result of the 
former's drawbacks, including challenging bioactivity prediction and convoluted synthesis routes. In addition, 
computer-aided synthesis planning can forecast a variety of synthesis paths for millions of potential structures. 
Variational autoencoders, which consist of two neural networks, have been used to train models based on Quantitative 
estimation of drug-likeness scores and synthetic accessibility scores [35-38]. These models have been compared to 
adversarial autoencoders, which produce more valid structures. 

In order to create products that are chemically practical and have a large rate of reaction, a framework was devised in 
which a rigorous forward reaction template was applied to a set of reactants. Based on a score provided by the neural 
networks, machine learning was utilized to identify the dominating product [22]. SMILES strings used to represent 
molecules were used to train this platform. Then, using specified chemical descriptors for MW, logP and topological 
polar surface area (TPSA), it produced compounds.  

The Reinforcement Learning for Structural Evolution approach, which uses generative and predictive DNNs to create 
novel molecules, was created for de novo drug synthesis. In this case, the predictive models are utilized to forecast the 
features of the created chemical while the generative model generates more distinctive molecules in terms of SMILE 
strings based on a stack memory [39]. The involvement of AI in the de novo design of molecules can be beneficial to the 
pharmaceutical sector because of its various advantages, such as providing online learning and simultaneous 
optimization of the already learned data as well as suggesting possible synthesis routes for compounds leading to swift 
lead design and development [38,40]. 

Recursive neural networks (RNNs) have also been successfully used for de novo design, using sequential information to 
generate chemical structures. Reinforcement learning and transfer learning have been applied to bias the generated 
compounds towards desired properties [41]. Inverse-QSAR modeling, another de novo molecular design approach, 
seeks to design molecules with desired activity or property by inversely mapping the molecular descriptor from a pre-
constructed quantitative structure-activity/property relationship (QSAR/QSPR) models [42]. 

4. AI in drug screening 

Drug discovery and development is a money and time-consuming process. Even then, however, nine out of ten medicinal 
compounds fall short of passing regulatory approval and Phase II clinical trials. Due to their ability to predict in vivo 
activity and toxicity, algorithms including Nearest-Neighbour classifiers (RF), extreme learning machines (SVMs), and 
deep neural networks (DNNs) are utilized for VS based on synthesis feasibility [43-45]. A platform for the identification 
of treatments for conditions like immune-oncology and cardiovascular disorders has been developed by a number of 
biopharmaceutical companies, including Bayer, Roche, and Pfizer, in collaboration with IT firms [17].  

When developing a new drug, it is important to take into account how the drug's predicted physicochemical properties, 
such as solubility, partition coefficient (log P), degree of ionization and intrinsic permeability, may indirectly affect its 
pharmacokinetics and target receptor family. It is possible to anticipate physicochemical properties using a variety of 
AI-based methods. For instance, ML employs sizable data sets created during earlier compound optimization to train 
the program [46]. Molecular descriptors, such as SMILES strings, potential energy measurements, electron density 
around the molecule and coordinates of atoms in 3D, are used in drug design algorithms to produce workable 
compounds via DNN and afterward forecast their attributes [47]. 

The Estimation Program Interface (EPI) Suite, a quantitative structure-property relationship (QSPR) workflow, was 
created to ascertain the six physicochemical characteristics of environmental chemicals collected from the 
Environmental Protection Agency (EPA) [46]. The lipophilicity and solubility of several substances have been predicted 
using neural networks based on the ADMET predictor [48]. The solubility of compounds has been predicted using DL 
techniques including undirected graph recursive neural networks and graph-based convolutional neural networks [49]. 
The acid dissociation constant of substances has been predicted in several cases using ANN-based models, graph 
kernels and kernel ridge-based models [46,50]. Similar to this, cell lines including the Madin-Darby canine kidney cells 
and the human colon adenocarcinoma (Caco-2) cells have been used to gather data on the cellular permeability of a 
variety of chemicals, which is then given to AI-assisted predictors [51]. Thus, AI has a significant role in the development 
of a drug, to forecast not only its desired physicochemical properties, but also the desired bioactivity. 
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Virtual screening (VS) is a computational technique that offers a complementary and cost-effective approach for hit 
identification in drug discovery. It prioritizes a subset of compounds for evaluation in a primary assay. AI methods that 
augment VS approaches have gained attention in drug discovery [52]. Ligand-based virtual screening (LBVS) techniques 
aim to identify active compounds from a chemical library based on molecular similarity. Predictive modeling for VS is 
an extension of the classical QSAR modeling paradigm. Access to large volumes of chemogenomics data and advances 
in ML and DL algorithms have provided new opportunities for QSAR modeling as a VS technique [53]. Over the past 
decade, there has been a shift to web-based cheminformatics workbenches that streamline and automate ML and DL 
based QSAR workflows for virtual screening. Structure-based virtual screening (SBDD) is a common computational 
strategy applied in SBDD, driving many structurally enabled drug discovery programs [54]. 

5. In silico pharmacokinetic and toxicity prediction 

In the late 1990s, poor pharmacokinetics of drug candidates led to a paradigm shift within the pharmaceutical industry. 
In silico ADMET modeling aims to assist project teams in designing and selecting novel compounds with superior 
ADMET properties and directing experimental resources to the most favorable compounds [55]. Pharmaceutical 
companies have deployed many global in silico ADMET models in their discovery pipelines. Early work used linear 
regression methods, but with the development of machine learning algorithms and large-scale homogenous ADMET 
data, in silico ADMET modeling transitioned to ML based predictive models. Multitask DNNs were more accurate in 
predicting ADMET endpoints than single-task DNNs and shallow-learning ML methods. However, combining 
mechanistically unrelated endpoints in a multitask model could lead to poor performance, as the information shared 
between tasks might not be correlated. Therefore, a prior assumptions of the predictive advantage of multitask DNN 
over single-task DNNs are a challenge, and both approaches need to be evaluated when developing predictive ADMET 
models [56]. 

5.1. Prediction of Bioactivity 

The affinity of drug molecules for the target protein or receptor determines how effective they are. The therapeutic 
effect will not be produced by drug molecules that do not interact with or have no affinity for the targeted protein. In 
rare cases, it's also feasible that enhanced medication molecules will connect with proteins or receptors they weren't 
intended to, causing toxicity. As a result, it is essential to forecast drug-target interactions using drug target binding 
affinity. By taking into account the characteristics or similarities of the drug and its target, AI based approaches can 
estimate a drug's binding affinity. To determine the feature vectors, feature-based interactions identify the chemical 
moieties of the medication and the target. By contrast, in similarity-based interaction, the similarity between drug and 
target is considered, and it is assumed that similar drugs will interact with the same targets. For predicting drug-target 
interactions, web programs like ChemMapper and the similarity ensemble method are available. It is also possible to 
take into account drug characteristics from SMILES, ligand maximal common substructure (LMCS), extended 
connectivity fingerprint or a combination of these [57,58]. 

A drug's bioactivity also takes into account ADME information. The sites of drug metabolism are determined using AI-
based techniques like XenoSite, FAME and SMARTCyp. In addition, software such as CypRules, MetaSite, MetaPred, 
SMARTCyp and WhichCyp were used to identify specific isoforms of CYP450 that mediate a particular drug metabolism 
[59]. 

5.2. Prediction of Toxicity 

Any drug's toxicity must be predicted in order to prevent adverse effects. The cost of developing new drugs is increased 
by the frequent use of cell-based in vitro assays as preliminary investigations, followed by animal trials to determine a 
compound's toxicity. Toxtree, pkCSM, LimTox and admetSAR are just a few of the web-based applications available to 
assist cut costs. Advanced AI-based methods predict a compound's toxicity based on input features or explore for 
commonalities between substances. The Tox21 Data Challenge organized by the National Institutes of Health, 
Environmental Protection Agency (EPA) and US Food and Drug Administration (FDA) was an initiative to evaluate 
several computational techniques to forecast the toxicity of environmental compounds and drugs [54]. An ML algorithm 
named DeepTox outperformed all methods by identifying static and dynamic features within the chemical descriptors 
of the molecules, such as molecular weight (MW) and Van der Waals volume and could efficiently predict the toxicity of 
a molecule based on predefined 2500 toxicophoric features [60].  

eToxPred, which was created using ML, was used to calculate the toxicity and synthesis viability of tiny organic 
compounds and it demonstrated accuracy of up to 72% [59]. Similar to this, open-source methods used in toxicity 
prediction include TargeTox and PrOCTOR. The guilt-by-association principle, which states that entities with 
comparable functional qualities have similarities in biological networks, is used by TargeTox, a biological network 
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target-based medication toxicity risk prediction method. In order to predict drug toxicity, it can generate protein 
network data and combine pharmacological and functional features in an ML classifier [61,62]. A 'PrOCTOR score' was 
created by PrOCTOR, which was trained using an RF model, and which included drug-likeliness characteristics, 
molecular characteristics, target-based characteristics and characteristics of the protein targets to predict if a 
medication would fail in clinical trials due to its toxicity. The FDA-approved medications that afterward disclosed 
adverse drug events were also recognized [63,64]. 

5.3. Predicting Drug-Target Interactions 

The effectiveness of therapy depends heavily on interactions between drugs and proteins. To comprehend a drug's 
efficacy and effectiveness, anticipating how it will interact with a receptor or protein is crucial. This information also 
enables medications to be repositioned and avoids polypharmacology. The accurate prediction of ligand-protein 
interactions made possible by a variety of AI techniques has improved therapeutic efficacy [29,65].  

By integrating pharmacological and chemical data and verifying two RF models against well-known platforms like SVM 
with high sensitivity and specificity, it was possible to predict plausible drug-protein interactions. Additionally, these 
modes could anticipate relationships between drug and target, which could then be expanded to include associations 
between target and illness and target and target [66]. This could speed up the drug development process. For 
determining interactions between a drug and G-protein-coupled receptors (GPCRs), ion channels, enzymes and nuclear 
receptors (NR) respectively, this is a mixture of four sub-predictors. When this predictor was compared with existing 
predictors, the former surpassed the latter in terms of both prediction accuracy and consistency [67]. 

AI's capacity to predict drug-target interactions has also been utilized to help reposition currently available medications 
and prevent polypharmacology. A medicine that has been repurposed or repositioned is eligible for Phase II clinical 
trials right away [17]. Re-launching an old drug saves money because it only costs $8.4 million to do so as opposed to 
$41.3 million to launch a brand-new medicinal entity [68]. The 'Guilt by association' method, which may be applied to 
networks that are knowledge-based or computationally driven, can be used to predict the novel associations between 
medicine and disease [69]. Logistic regression platforms, such as PREDICT, SPACE and other ML approaches, consider 
drug–drug, disease–disease similarity, the similarity between target molecules, chemical structure and gene expression 
profiles while repurposing a drug [70]. Topotecan, a topoisomerase inhibitor currently in use, has been investigated to 
anticipate its therapeutic use using cellular network-based deep learning technology. A US provisional patent is now 
covering this platform. Self-organizing maps (SOMs) are employed in medication repurposing and are within the 
unsupervised category of machine learning. By training the system on a predetermined number of compounds with 
known biological activities, they are able to search for novel off-targets for a group of pharmacological molecules using 
a ligand-based strategy [71]. Drug-protein interactions can also foretell the likelihood of polypharmacology or a drug's 
propensity to interact with many receptors and cause off-target or adverse effects. In order to create safer medicinal 
molecules, AI can develop a novel molecule using the principles of polypharmacology [72]. 

6. AI in chemical synthesis 

Compound ideation has a long history, with early structure-based de novo design approaches involving automated 
construction of ligands within receptor binding sites [73]. AI-based generative modeling algorithms have gained 
popularity in recent years, enabling the generation of synthetically tractable compounds with drug-like properties while 
satisfying the desired target property profile. Generative chemistry relies on AI-based generative modeling tools to 
generate synthetically tractable compounds with drug-like properties while satisfying the desired target property 
profile [74]. Current generative modeling methodologies can be categorized based on the underlying method used for 
molecular featurization. Recent studies have demonstrated the ability of generative AI to deliver synthetically tractable, 
novel bioactive molecules that satisfy design objectives [75]. 

Organic synthesis is a crucial aspect of small molecule drug discovery, as it helps identify molecules with improved 
properties. Synthesis planning is a key discipline in drug discovery, and various computational approaches have been 
developed to assist in synthesis planning. Three aspects are predicted: reaction outcome, chemical reaction yield and 
retrosynthetic planning. Retrosynthetic planning is dominated by knowledge-based systems built on expert-derived 
rules or automatically extracted rules from reaction databases [76]. Machine learning-based approaches have been 
described for forward synthesis prediction, which ranks synthetic routes from reaction analysis. Examples include 
quantum chemical descriptors combined with manual encoded rules and machine learning to predict reactions and 
their products [77]. Artificial intelligence has also been described for retrosynthetic analysis, using sequence-to-
sequence based models for retrosynthetic reaction prediction. The technology is comparable to rule-based expert 
systems, but large differences have been observed over different reaction classes. A combination of three deep neural 
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networks and a Monte Carlo tree search for retrosynthetic prediction yielded excellent performance, with medicinal 
chemists preferring the route proposed by this methodology over rule-based approaches [78]. 

7. AI in pharmaceutical product development  

The subsequent inclusion of a novel therapeutic molecule into an appropriate dosage form with the requisite delivery 
properties is necessary. The more traditional method of trial and error can be replaced in this area by AI [79]. With the 
use of QSPR, a variety of computational methods can tackle concerns with stability, dissolution, porosity and other 
formulation design-related challenges [80]. Decision-support tools operate through a feedback mechanism to monitor 
the entire process and sporadically adjust it. They employ rule-based systems to choose the type, nature and quantity 
of the excipients based on the physicochemical parameters of the medicine [81]. 

The influence of the powder's flow property on the die-filling and process of tablet compression has been studied using 
a variety of mathematical tools, including computational fluid dynamics (CFD), discrete element modeling (DEM) and 
the Finite Element Method. The effect of tablet geometry on its dissolution profile can also be investigated using CFD 
[82,83]. The rapid production of pharmaceutical items may greatly benefit from the integration of these mathematical 
models and AI. 

8. AI in drug repurposing 

Artificial intelligence (AI) has been increasingly utilized in drug repurposing efforts, which involve finding new 
therapeutic applications for existing drugs. AI algorithms can analyze large amounts of data from various sources, 
including electronic health records, scientific literature and clinical trial databases. By mining this data, AI can identify 
potential connections between drugs and new therapeutic targets [84]. AI can build predictive models to assess the 
effectiveness of existing drugs against different diseases or conditions. These models can take into account multiple 
factors, such as molecular structure, biological pathways and genetic information, to identify drugs with potential 
repurposing opportunities [85-87].  

Through computational simulations and molecular docking techniques, AI algorithms can predict the drug-target 
interactions, helping to identify promising drug candidates for repurposing [88,89]. AI can analyze databases of known 
drug side effects to identify unexpected therapeutic effects. By examining patterns and correlations in adverse event 
data, AI algorithms can uncover potential repurposing opportunities by repurposing drugs based on their shared side 
effect profiles [90]. AI can analyze biological networks and pathways to identify new connections between diseases and 
existing drugs. By understanding the complex interactions within biological systems, AI can identify drugs that may 
affect multiple targets or pathways, making them suitable candidates for repurposing [9]. AI can help optimize clinical 
trials for repurposed drugs by analyzing patient data, identifying suitable patient populations and predicting treatment 
outcomes. This can improve the efficiency and success rate of drug repurposing trials. Overall, AI offers a powerful 
toolset for accelerating drug repurposing efforts by leveraging big data, predictive modeling and advanced 
computational techniques. These applications have the potential to enhance the discovery of new therapeutic uses for 
existing drugs, ultimately leading to more effective treatments for a range of diseases and conditions [91,92]. 

9. AI in clinical trial  

Clinical trials take about 6-7 years and entail a substantial financial investment in order to determine the efficacy and 
safety of a medicinal product in people with a specific illness condition. Only one out of every ten molecules that enter 
these trials, however, is cleared successfully, which is a significant loss for the industry [93]. These failures may be the 
result of poor patient selection, inadequate infrastructure and outdated technology needs. With the use of AI, these 
problems can be minimized because to the abundance of digital medical data that is currently available [94]. 

The enrolment of patients takes one-third of the clinical trial timeline. The enrollment of qualified patients can ensure 
the success of a clinical study, which would otherwise result in about 86% of failure cases. By applying patient-specific 
genome-exposome profile analysis, AI can help in the selection of only a certain diseased population for enrollment in 
Phase II and III of clinical trials. This analysis can aid in the early prediction of the available therapeutic targets in the 
patients selected. Preclinical molecular discovery as well as the early prediction of lead molecules, that would pass 
clinical trials with consideration of the chosen patient population by using other aspects of AI, such as predictive ML 
and other reasoning techniques, help in the early prediction of lead molecules that would pass clinical trials. The failure 
of 30% of clinical studies is attributed to patient dropout, which necessitates further recruiting efforts to complete the 
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experiment, wasting time and resources. By carefully monitoring the patients and assisting them in adhering to the 
appropriate clinical trial procedure, this can be avoided [17,94,95].  

10. AI in diseases diagnosis 

AI can aid in the diagnosis of diseases by analyzing medical images, such as X-rays, MRIs and histopathological slides. 
Deep learning algorithms can detect patterns and anomalies in images, assisting healthcare professionals in identifying 
diseases at an early stage. AI can also analyze patient data, including symptoms, medical history and genetic information, 
to support diagnosis and personalized treatment decisions. AI assists clinicians in diagnosing patients with various 
illnesses, reducing diagnostic time and improving efficiency. By analyzing clinical data from radiology, pathology and 
biochemical examinations, AI can produce accurate results, transforming traditional medical models. This allows 
doctors to create more deliberate and reasonable treatment plans based on the patient's condition [96]. 

10.1. AI in Radiology 

Radiology currently plays a role in the diagnosis of practically all diseases as a scientific and intuitive foundation for 
medical diagnosis. The need for radiological diagnoses is growing rapidly each year, but it takes time to develop medical 
expertise and the number of doctors with radiation medicine experience is only slowly rising. High occupational 
pressure and rates of misdiagnosis are seen as a result of the growing imbalance between the supply and demand of 
medical doctors in this field. AI algorithms can help analyze and interpret medical images such as X-rays, CT scans, MRI 
scans and ultrasound images. These algorithms can assist in detecting and diagnosing various conditions, including 
abnormalities, tumors, fractures and other anomalies. AI-based CAD systems can automatically highlight potential 
abnormalities on medical images, acting as a second pair of eyes for radiologists. These systems can help improve the 
accuracy and efficiency of radiologists by flagging suspicious areas for further evaluation [97-100]. 

10.2. AI in pathology 

AI algorithms can analyze and interpret pathology images, including histopathology slides, cytology slides and 
immunohistochemistry slides. These algorithms can assist pathologists in detecting and diagnosing various diseases, 
such as cancer, infections and autoimmune disorders [101]. AI can help identify abnormal cells, classify tissue types and 
provide quantitative analysis of biomarkers. AI is particularly valuable in the emerging field of digital pathology, where 
glass slides are digitized and analyzed using computer algorithms. AI can help automate the scanning and digitization 
process, making it easier to store, access and share pathology images [102]. This technology enables remote 
consultations, second opinions and large-scale data analysis for research purposes. AI algorithms can assist in quality 
control processes in pathology laboratories. They can automatically identify errors or inconsistencies in slides, such as 
staining artifacts or tissue artifacts, ensuring that high-quality results are produced. This can help improve the accuracy 
and reliability of pathology diagnoses [103,104].  

11. AI in personalized treatment 

AI can aid in the development of personalized treatment plans by analyzing large-scale datasets, including genomic data, 
electronic health records and clinical trial data. Machine learning algorithms can identify patterns and correlations in 
these data, enabling the prediction of treatment responses and the identification of optimal therapies for individual 
patients. AI can provide decision support to healthcare providers by offering evidence-based recommendations for 
treatment options. By analyzing patient data, including medical history, genetic profiles and real-time monitoring data, 
AI algorithms can assist in identifying the most effective interventions and predicting potential adverse events. This 
helps healthcare professionals make more informed decisions regarding personalized treatment plans [105]. 

AI algorithms can continuously monitor patient data, such as vital signs, biomarker levels and disease progression, to 
assess treatment efficacy in real-time. By analyzing this data, AI can detect early signs of treatment response or failure, 
allowing healthcare providers to adjust treatment plans accordingly and optimize personalized therapies [106]. AI 
technologies can enable remote monitoring of patients outside of traditional healthcare settings. Wearable devices and 
sensors can collect data on patient’s physiological parameters, activity levels and medication adherence. AI algorithms 
can analyze this data, providing insights into patient health and facilitating remote interventions and personalized 
treatment adjustments. AI can leverage patient data to develop predictive models that estimate individual risks for 
diseases or treatment outcomes. By considering factors such as genetics, lifestyle and environmental influences, AI 
algorithms can identify patients at higher risk for certain conditions and enable proactive interventions or preventative 
measures [107]. 
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12. Conclusion 

The development of AI and its impressive tools continuously aims to lessen the difficulties faced by pharmaceutical 
companies, having an impact on both the drug development process and the overall lifecycle of the product. This review 
explains the application of AI in various aspects of health care. These advancements hold great promise for improving 
healthcare outcomes, enabling precision medicine and accelerating scientific research in the field of medicine. However, 
it is important to ensure ethical considerations, regulatory frameworks and ongoing research to maximize the benefits 
and address any potential challenges or risks associated with AI in healthcare. Through thorough market analysis and 
forecasting, AI can also assist in determining the product's safety and effectiveness in clinical trials, as well as ensure 
correct positioning and pricing in the market. Despite the fact that there are presently no pharmaceuticals on the market 
that were created using AI-based approaches and despite the fact that specific implementation issues still exist, it is 
expected that AI will soon become a crucial tool in the pharmaceutical business. 
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