

World Journal of Biology Pharmacy and Health Sciences

eISSN: 2582-5542 Cross Ref DOI: 10.30574/wjbphs Journal homepage: https://wjbphs.com/

(Review Article)

Traditional medical practice on Primitive Nooka Dora tribes, Alluri Sitaramaraju District, Andhra Pradesh

Padi Aishwarya*, Dokka Joseph jedidiah, S. R. N. Vamsi Vara Prasad, Pamula Joy Snehith and S. B. Padal

Department of Botany, Andhra University, Visakhapatnam-530003, A.P., India.

World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 363-367

Publication history: Received on 10 March 2024; revised on 20 April 2024; accepted on 23 April 2024

Article DOI: https://doi.org/10.30574/wjbphs.2024.18.1.0216

Abstract

An ethnomedicinal survey was carried out in HukumpetaMandal, AlluriSitaramaraju District, Andhra Pradesh, India. For documentation of important ethnomedicinal plants and information from local community about their medicinal uses. The traditional knowledge of primitive Nooka Dora tribe traditional uses was collected through questionnaire and personal interviews during field trips. The identification and nomenclature of the listed plants were based on the Flora of Andhra Pradesh. A total of 49 plants species belong to 47 genera and 37 families were identified by taxonomic description and locally by ethnomedicinal knowledge of people existing in the region.

Keywords: Traditional medicinal practice; Nooka Dora primitive tribal communities; Hukumpeta Mandal; AlluriSitaramaraju district

1. Introduction

India is an oldest, the richest and most diverse cultural traditions associated with the use of medicinal plants in the form of traditional systems of medicine including Ayurveda, Homeopathy, Siddha and Unani. India is a botanical garden of the world and a goldmine of well recorded and traditionally well-practiced knowledge of herbal medicine. More than 6000 plants in India are use in traditional folk and herbal medicine representing about 75% of the medical needs of third world countries. Ethnobotany is the study of the interaction between plants and people with a particular emphasis on traditional tribal cultures. Which play an important role on a collection of medicinal use of plants, based on the knowledge on plants by the local people and their usefulness by a particular ethnic group and information concerning particular plant varies from one ethnic group to another. The use of medicinal herbs is still a tradition adopted by ethnic communities who are living in undulating plains and at the foothills of dense forest. A multitude of tribal groups and very diversified vegetation make India a top country for ethno botany knowledge. It is estimated that India is home to 17,500 angiosperm species alone (Jain, 2000). Glimpses of Indian Ethno botany (Jain, 1981) contributed to the development of ethno botanic studies in India. These studies are especially important for aboriginal people (Maheshwari and Singh, 1984). Different botanists have documented the uses of various medicinal plants from different parts of Andhra Pradesh. I. Siva ramakrishna and M. Sujathamade a note on medicinal plant diversity at Kondapalli reserve forest in Andhra Pradesh.

2. Material and Methods

2.1. Study area

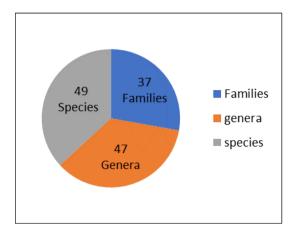
Hukumpeta Mandal of Alluri Sitaramaraju District, Andhra Pradesh, is the higher altitude zone in the hilly tracts of Eastern Ghats of Andhra Pradesh. It has the second highest tribal population in Andhra Pradesh. It lies in between

^{*}Corresponding author: Padi Aishwarya

latitudes of 17°-50¹ and 18° - 35¹ north and longitude of 82°-17¹ and 83°-1¹ East with a total geographical area of 3, 24,965 Hector .Nooka Dora tribes are chiefly residing in the densely wooded hill slopes in the schedules areas of AlluriSitaramaraju districts of Andhra Pradesh. They are also known as Samantha, KondaKodu, Jatapu, Jatapu Dora, Kodi, Kodu, Kondu and Kuinga. These terms are used for Nooka Dora in different areas of Hukumpeta Mandal, Alluri Sitaramaraju districts. The Nooka Dora mainly subsist on cultivation. They are experts in Podu cultivation. They grow millets like Ragi, Sama and Korra and Oil seeds like niger, castor and pulses like red gram in podu fields.

3. Methodology

Information on the use of medicinal plants was collected during year 2023 - 2024 through field surveys in different interior villages of the Hukumpeta Division, AlluriSitaramaraju district. The questionnaires were devised to identify the indigenous knowledge of plant-based remedies from primitive Nooka Dora people. Information was gathered through semi-structured interviews that were held with selected knowledgeable men and women Porja tribes. At the end of made into herbarium. The voucher specimens were housed in the Botany Department Herbarium (each interview, the plant specimens were collected, dried by using routine botanical collection and herbarium techniques, identified and preserved (Jain & Rao 1997). The representative taxa were collected and identified with the help of floras (Pullaiah & Ramamurthy 2002; Pullaiah et.al. 2007) and BDH), Department of Botany, Andhra University, Visakhapatnam.


4. Result and Discussion

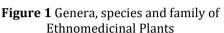

During exploration trips, medicinally useful information have been recorded on 49 plant species belonging to 47 genera and 37 families were recorded which are exploited by the Nooka Dora tribes for their healthcare. The family wise analysis of ethnomedicinal data revealed that out of 40 families the dominant ones are Fabaceae represented by 4 species followed by Rutaceae with 4 species, Asteraceae with 3 species, Amaranthaceae, Caselpinaceae, Ebeneaceae, and Sapotaceae with 2 species each and remaining were single species. From the present study it is clearly evident that the local people used trees (17), followed by shrubs (3), climbers (8) and herbs (19), parasites (2) (Table. 1). Depending upon the plant part used for medicinal purposes roots constitutes the highest percentage (14) followed by leaf (9), stem bark (9), whole plant (4), tuber (2), seed (3) and rhizome (3), remaining were single species. Intensive survey and repeated personal interviews in different pockets resulted in coming across 27 diseases in the area. A total of 49 species reported in the present study are used in curing 27 different ailments are Abortion(2), Acidity(2), Allergy (1), Anameia (3), antihelminthic (2), Asthma (4), Blood pressure (1), Body pains (1), Boils (1), Burns (1), Cholera (1), cold (3), conjunctivitis (1), cough (1), cuts (1), Diarrhoea (4), Dysentry(2), Dysmnehorrea (1), Ear ache (1), Epilepsy (2), Fever(1), Head ache (2), HIV (1), Leucorrohea (3), Respiratory trouble (1), Rheumatism (1), Rhemutaoid Arthritis (3), Sterility (1), The most commonly treated disease was diarrhoea with 4 plants were used by local Nooka Dora tribal people of Hukumpeta Division, AlluriSitaramaraju District.

Table 1 Ethnomedicinal plants used by Nooka Dora tribes, Humkumpeta mandal, Alluri Sitaramaraju District.

S.no	Family	Plant name	Habit	Parts used	Disease
1	Adiantaceae	Adiantum lunulatum	Herb	Fronds	Abortion
2	Amaranthaceae	Achyranthes aspera	Herb	Seed	Anitidote
3	Amaranthaceae	Aerva lanata	Herb	Root	Headache
4	Anacardiaceae	Mangifera indica	Tree	Gum	Boils
5	Araceae	Acorus calamus	Herb	Rhizome	Cold
6	Asclepiadaceae	Cryptolepis buchanani	Climber	Root	Diarrohea
7	Asteraceae	Eclipta prostrata	Herb	Whole plant	Acidity
8	Asteraceae	Elephanto pusscaber	Herb	Root	Anthelmintic
9	Asteraceae	Vernonia cinerea	Herb	Seed	Leucorrhoea
10	Barringtoniaceace	Barringtonia acutangula	Tree	Leaf	Headache
11	Bombaceae	Bombax cebia	Tree	Leaf	Leucorrhoea
12	Caesalpinaceae	Bauhinia racemosa	Tree	Stem bark	Asthma

13	Caesalpinaceae	Bauhinia vahili	Climber	Root	Dysentry
14	Cappardiaceae	Cappa riszeylancia	Shrub	Root	Earache
15	Costaceae	Costus speciosus	Herb	Rhizome	Abortion
16	Cuscutaceae	Cuscuta reflexa	Parasite	Whole plant	Epilepsy
17	Cyperaceae	Cyperus rotundus	Herb	Tuber	Diarrohea
18	Dillineaceae	Dillenia pentagyna	Tree	Stem bark	Rhemuatoidarthiritis
19	Dioscoreaceae	Dioscorea bulbifera	Climber	Tuber	Sterility
20	Ebenaceae	Diospyros chloroxylon	Tree	Leaf	Diarrohea
21	Ebenaceae	Diospyros melanoxylon	Tree	Stem bark	Cold
22	Euphorbiaceae	Mallotus philippensis	Tree	Fruit	Anthelmintic
23	Fabaceae	Canavalia gladiata	Climber	Root	Diarrohea
24	Fabaceae	Dalbergia latifolia	Tree	Stem bark	Fever
25	Fabaceae	Desmodium gangeticum	Herb	Leaf	Acidity
26	Fabaceae	Mucunap ruriense	Climber	Root	Dysmenorrhoea
27	Hypoxidaceae	Curculigo orchiodes	Herb	Root	Cuts
28	Lauraceae	Litseaglutinosa	Tree	Seed	Rhemuatism
29	Loranthaceae	Dendrophthoe falcata	Parasite	Stem bark	Asthma
30	Lygodiaceae	Lygodium flexuosum	Herb	Root	Anaemia
31	Melastomaceae	Memecylon umbellatum	Tree	Root bark	Leucorrhoea
32	Mimosaceae	Mimosa pudica	Herb	Root	Epilepsy
33	Moringaceae	Moring oleifera	Tree	Leaf	Blood pressure
34	Musaceae	Musa paradasiaca	Herb	Leaf	Cough
35	Nelumbonaceae	Nelumbo nucifera	Herb	Perianth	Conjuctivitis
36	Nyctanginaceae	Boerhavia diffusa	Herb	Whole plant	HIV
37	Olacaceae	Olax scandens	Climber	Stem bark	Anaemia
38	Poaceae	Vetivera zizanoides	Herb	Root	Allergy
39	Ranunculaceae	Naravelia zeylanica	Climber	Leaf	Cold
40	Rutaceaae	Aegle marmelos	Tree	Stem bark	Cholera
41	Rutaceaae	Limnonia acidissima	Tree	Root	Rhemuatoidarthiritis
42	Rutaceaae	Murraya paniculata	Shrub	Root	Anaemia
43	Rutaceaae	Naringi crenulata	Tree	Stem bark	Dysentry
44	Sapindaceae	Cardiospermum halicacabum	Climber	Leaf	Burns
45	Sapotaceae	Madhuca indica	Tree	Flowers	Asthma
46	Sapotaceae	Manilkara hexandra	Tree	Stem bark	Body pain
47	Schrophulariaceae	Bacopa monneri	Herb	Whole plant	Respiratory trouble
48	Solanaceae	Datura metel	Shrub	Root	Asthma
49	Zingiberaceae	Curcuma longa	Herb	Rhizome	Rhemuatoidarthiritis

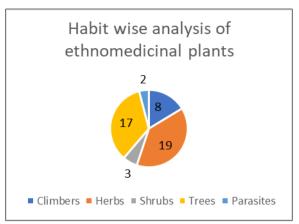


Figure 2 Habit- wise analysis of Ethnomedicinal plants

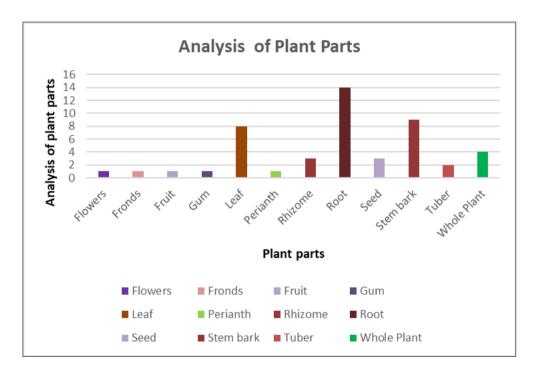


Figure 3 Plant parts analysis of Ethnomedicinal plants

5. Conclusion

The present study was conducted to document the ethnomedicinal plant resources of HukumpetaMandal, AlluriSitaramaraju District of Andhra Pradesh, India as well as to explore the traditional knowledge or belief of these plants used by the village people for their primary health care needs. Theethnomedicinal plants demonstrated the presence of several phytochemicals in them and displayed phenolic and flavonoid compounds with hepatoprotective properties in most of the experimental studies performed with these plants. Nevertheless, very few studies are carried out on the scientific validation of medicinal plants by means of biochemical, clinical, and pharmacological screening to validate the healing folklore medicine. In the future, it is, therefore, very important to pursue steps that do not deviate from shifting the view of tribal people toward their indigenous belief in the treatment of healing to develop successful drugs or to discover new potential sources of drugs.

Compliance with ethical standards

Acknowledgements

The author is very much thankful to the Tribal people of Hukumpeta mandal, Alluri Sitaramaraju district for sharing your valuable knowledge and help during field work.

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Zafar, M.; Khan, H.; Muhammad, N.; Sultana, S. Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. *Afr. J. Biotechnol.* 2009, 8, 1644–1650.
- [2] Bhogaonkar, P. Y. & Devarkar, V. D., 2002. Some unique ethnomedicinal plants of Korkus of Melghat Tiger Reserve (Maharashtra). Ethnobotany. 14: 16–19.
- [3] Chaudhari, U. S. & Hutke, V., 2002. Ethno-medico-botanical information on some plants used by Melghat tribes of Amravati District, Maharashtra. Ethnobotany. 14: 100–102.
- [4] Chopra, R. L., I. C. Chopra, K. L. Handa and L. D. Kapur, 1958. Chopra's Indigenous drugs of India. U. N. Dhur & Sons Pvt. Ltd., Calcutta.
- [5] Chopra, R. N., I. C. Chopra and Verma, B. S., 1969. Supplement to Glossary of Indian Medicinal Plants. CSIR, New Delhi.
- [6] Chopra, R. N., S. L. Nayar and I. C. Chopra, 1956. Glossary of Indian Medicinal Plants. CSIR, New Delhi.
- [7] HEMADRI, K. 1987. Andhra Pradesh Vanamulikalu. Chemiloids, Vijayawada. (in Telugu).
- [8] Jain, S. K. & Rao, R. R., 1977. A handbook of field and herbarium methods; Today and Tomorrows Printers and Publishers, New Delhi.
- [9] Jain, S. K. & Rao, R. R., 1977. A handbook of field and herbarium methods; Today and Tomorrows Printers and Publishers, New Delhi.
- [10] Jain,S.K.,(Ed.)1981.GlimpsesofIndianethnobotany.OxfordandIBHPublishingCo.,NewDelhi. Jain,S.K.,1963c.
- [11] Magico religiousbeliefsaboutplantsamongtheadivasisofBastar.Q.J.Myth.Soc.,54(3):73-94. [3] Jain,S.K.,1965.
- [12] Maheshwari, J.K. and J.P. Singh. 1984. Contribution to the ethnobotany of Bhoxa tribe of Bihar and PauriGarhwal districts, U.P. J. Econ. Tax. Bot. 5:251-259
- [13] Ministry of information and Broadcasting; 2002.
- [14] Pullaiah, T., & Ramamurthy, K.S. (2002). Flora of Eastern Ghats: Hill ranges of South East India (Vol. 2). New Delhi: Regency Publications.
- [15] Rajashekharan PE. Herbal medicine. World of Science. New Delhi, India: Employment News,
- [16] Savithramma N, Linga Rao M, Yugandhar P, Haribabu R. Ethnobotanical study of Penchalakona forest area of Nellore District, Andhra Pradesh, India. *Int J Phytomed.* 2012;4:333–9.
- [17] Sharma M, Kumar A. Ethnobotanical and Pharmacognostical Studies of Some Medicinal Plants: Tribal Medicines for Health Care and Improving Quality of Life. Germany: Lambert Academic Publishers; 2011. p. 23
- [18] Siva Rama Krishna I And Sujatha M. A status survey of medicinal plant diversity at Kondapalli reserve forest, Andhra Pradesh, India. International Journal of Applied Sciences, Engineering and Technology 2012; 1(1):1 5