Biological Control of Aphid by using Beetle (*Coccinella septempunctata*)

Ayushi Mishra and Newton Paul

Department of Zoology, Isabella Thoburn college, Lucknow, India.

World Journal of Biology Pharmacy and Health Sciences, 2024, 18(02), 168–172

Publication history: Received on 22 March 2024; revised on 04 May 2024; accepted on 07 May 2024

Article DOI: https://doi.org/10.30574/wjbphs.2024.18.2.0251

Abstract

Development and reproductive potential of the *Coccinella septempunctata* L CSL was conducted under normal conditions to determine its fecundity and longevity on natural diet. Tests were made on normal temperature rearing materials and all development stages were carefully recorded. Diet quality is related to egg production, so CSL fertility is affected by diet type. CSL consumed highly significant (*Rhopalosiphum maidis*) approximately 28 aphids per day as compared to other treatments. Biological control (BC) of seven-spotted ladybirds emphasizes evaluating specific livestock for maximum efficiency, understanding agriculture in a new environment, and evaluating social interactions.

Keywords: *Coccinella septempunctata*; Cotton ball; Natural diets; Thermometer

1. Introduction

The aphidophagous ladybird beetle *Coccinella septempunctata* is one of the potential predators of the mustard aphid. These beetles are natural predators of many agricultural pests, particularly aphids, and are therefore used as a biological control agent in many farming systems. Lady bug beetle antennae are short, shorter than the front legs and are thicker at the ends than the middle and their larvae are very active and have rather rough looking bodies that are longer than the adults [6]. There are four development stages of ladybug beetle go through are embryonic, larval, pupal and adult stages [3]. Development and reproductive potential of the *Coccinella septempunctata* L [1,2] (CSL) was conducted under normal conditions to determine its fecundity and longevity on natural diet (2). Tests were made on normal temperature rearing materials and all development stages were carefully recorded [2]. Diet quality is related to egg production, so CSL fertility is affected by diet type. CSL consumed highly significant (*Rhopalosiphum maidis*) approximately 28 aphids per day as compared to other treatments. Biological control of seven-spotted ladybirds emphasizes evaluating specific livestock for maximum efficiency [2], understanding agriculture in a new environment, and evaluating social interactions.

Lady Bird Beetles, commonly known as Ladybugs, are a vital part of the ecosystem, particularly in the context of agriculture. The ladybird beetles *Coccinella septempunctata*, is an important predator of soft-bodied insect [10]. So, it is defined as reduction of pest population by natural enemies [5]. Predatory ladybugs (Coleoptera: Coccinellidae) are important enemies of many pests in crops worldwide. [11]. The presence of Lady Bird Beetles can also serve as an indicator of ecosystem health. Both adults and larvae are predators and a single ladybug can consume perhaps as many as Health 3,000 or more aphids in its lifetime and may also feed on scale insects, mites and mealybugs [9]. By reducing pest populations, Ladybugs help to increase crop yields and quality. And its major component of food material is protein. Naturally, they fed upon aphid, thrips, spider mites and various soft body insect and their eggs [10].
2. Materials and methods

The present study was conducted at normal temperature. During the experiment, Adults collected (CSL) were initially raised at room temperature and subsequently reconstructed and examined at each developmental stage. Three aphid prey species *Brevicoryne brassicae*, *Macrosiphum rosae* and *Rhopalosiphum maidis* were also reared within cages for feeding of *Coccinella septempunctata*. We used transparent box, cotton ball, Thermometer and natural diet for rearing. T1 *Brevicoryne brassicae*, T2 1st and 2nd in stars of *Macrosiphum rosae*, T3 *Rhopalosiphum maidis*. Beetle was collected from the college campus and for the experiment there are three diets were collected for the checking of the longevity of the beetle. One is natural diet. In natural diet there are three components are used viz. *Brevicoryne brassicae* First and second instar of *Macrosiphum rosae* and *Rhopalosiphum maidis*. *Brevicoryne brassicae* were collected for the college campus. That is also called cabbage aphid [1, 2]. The length of *Brevicoryne brassicae* is about 1.9 to 8 mm. First and second instar of *Macrosiphum rosae* were collected from I. T. College in the month of February. It is also called rose aphid. *Rhopalosiophum maidis* were also collected from the I.T. college. It’s is very destructive by nature. It is commonly called corn leaf aphid.
3. Result and discussion

3.1. No. of eggs are produced by the Coccinella septempunctata after consuming Brevicoryne brassicae

The pair of ladybird beetle has consumed 5 Brevicoryne brassicae the female beetle is produced 9 eggs in the first box. The pair of beetles have consumed 5 Brevicoryne brassicae then female beetle produced 10 eggs in 2nd box. The pair of beetles have consumed 6 Brevicoryne brassicae then female beetle produced 8 eggs in the 3rd box. The pair of beetles have consumed 7 then female beetle produced 7 eggs in the 4th box. The pair of beetles have consumed 8 Brevicoryne brassicae then female beetle produced 8 eggs in the 5th box (Table 1 and 2).

3.2. No. of eggs are produced by Coccinella septempunctata after consuming 1st and 2nd instar of Macrosiphum rosae

The pair of ladybird beetles have consumed 20 (1st and 2nd instar of Macrosiphum rosae) then female beetles produced ±15eggs in the 1st box. The beetles have consumed 20 (1st and 2nd instar of Macrosiphum rosae) then female is produced 15 eggs in the 2nd box. The pair of beetles have consumed 23 (1st and 2nd instar of Macrosiphum rosae), female beetle produced 16 eggs in the 3rd box. The pair of beetles have consumed 21 (1st and 2nd instar of Macrosiphum rosae), female beetle is produced 17 eggs in the 4th box. The pair of beetles have consumed 25 (1st and 2nd instar of Macrosiphum rosae) then female beetle is produced 17 eggs in the 5th box (Table 1 and 2).

3.3. No. of eggs are produced by Coccinella septempunctata after consuming Rhopalosiphum maidis

The pair of beetles have consumed 22 Rhopalosiphum maidis, female beetle is produced 17eggs 1st box. The pair of beetles have consumed 30 Rhopalosiphum maidis, female beetle produced eggs 20 in 2nd box. The pair of beetles have consumed 31 Rhopalosiphum maidis, female is produced 17 eggs in 3rd box. The pair of beetles have consumed 31 Rhopalosiphum maidis, female beetle is produced 17 eggs in 4th box. The pair of beetles have consumed 32 Rhopalosiphum maidis then female beetle produced about 18 eggs in 5th box (Table 1 and 2).

It was noted, the large no. of natural diet is consumed by the beetle is Rhopalosiphum maidis. Increasing order of natural diet consumed by the Coccinella septempunctata is:

Breviceoryne brassicae<1st and 2nd instar of Macrosiphum rosae<Rhopalosiphum maidis.

The effect of temperature and humidity on rearing of ladybird beetles in the laboratory was also observed. We found that optimal rearing conditions for ladybird beetles generally involve temperatures ranging between 20°C to 25°C [4] and relative humidity levels between 60% to 70%. These conditions promote healthy development, feeding activity, and reproduction in ladybird beetles. The nutritional requirements are very important for development of different stages of ladybird beetles. The protein-rich diets significantly enhance the growth and development of ladybird beetle larvae, leading to larger adult body size and higher species fecundity. Coccinella septempunctata was efficient in predation and its biological performance was the best compared to the other tested coccinellid species [8].

Table 1 No. of Natural diet (Breviceoryne brassicae) consumed by Coccinella septempunctata

<table>
<thead>
<tr>
<th>Natural diets</th>
<th>No. of different natural diets consumed by pair of beetle in box 1</th>
<th>No. of different natural diets consumed by pair of beetle in box 2</th>
<th>No. of different natural diets consumed by pair of beetle in box 3</th>
<th>No. of different natural diets consumed by pair of beetle in box 4</th>
<th>No. of different natural diets consumed by pair of beetle in box 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breviceoryne brassicae</td>
<td>5.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>1st and 2nd instar of Macrosiphum rosae</td>
<td>20.0</td>
<td>20.0</td>
<td>23.0</td>
<td>21.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Rhopalosiphum maidis</td>
<td>22.0</td>
<td>30.0</td>
<td>31.0</td>
<td>31.0</td>
<td>32.0</td>
</tr>
</tbody>
</table>
Table 2 No. of eggs are produced by *Coccinella septempunctata* on different natural diet

<table>
<thead>
<tr>
<th>Natural diets</th>
<th>No. of eggs are produced by pair of beetles in 1st Box</th>
<th>No. of eggs are produced by pair of beetles in 2nd Box</th>
<th>No. of eggs are produced by pair of beetles in 3rd Box</th>
<th>No. of eggs are produced by pair of beetles in 4th Box</th>
<th>No. of eggs are produced by pair of beetles in 5th Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevicoryne brassicae</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1st and 2nd instar of Macrosiphum rosae</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Rhopalosiphum maidis</td>
<td>17</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

4. Conclusion

Ladybugs predators of aphids and other plant-damaging pests. A single ladybug can consume hundreds of aphids during its lifetime. By preying on these pests, ladybugs help control their populations, reducing the need for chemical pesticides in agriculture. Ladybugs are often used as part of integrated pest management strategies in agriculture. By releasing ladybugs into crop fields, farmers can reduce the need for chemical pesticides while maintaining effective pest control.

Compliance with ethical standards

Acknowledgement

The author is thankful to the In-charge, Professor (Mrs.) Chitra Singh, Department of Zoology and Principal Prof. (Mrs.) Panzy Singh of Isabella Thoburn college, Lucknow all the necessary laboratory facilities and support.

Disclosure of conflict of interest

The authors have no any conflict of interest for publishing this article.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study

References

