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Abstract 

Transdermal Drug Delivery Systems (TDDS) offer a controlled and consistent release of medications, bypassing first-
pass metabolism and minimizing side effects associated with traditional oral and intravenous therapies. This study 
focuses on the development and evaluation of Ramosetron HCl transdermal patches designed for sustained release to 
manage nausea and vomiting. Ramosetron HCl, a selective 5-HT₃ serotonin receptor antagonist, was incorporated into 
various formulations using different grades of Hydroxypropyl Methylcellulose (HPMC), Polyvinyl Pyrrolidone (PVP 
K30), and Polysorbate 80. The patches were prepared by solvent casting and evaluated for various parameters including 
thickness, weight variation, drug content, folding endurance, tensile strength, and in-vitro drug release. The calibration 
curve for Ramosetron HCl in 7.4 pH phosphate buffer was established with a λmax of 240 nm. Fourier Transform 
Infrared Spectroscopy (FTIR) was employed to ensure compatibility between the drug and excipients. Formulation F5 
demonstrated optimal properties, including satisfactory drug release profiles and mechanical strength. Stability studies 
of F5 showed that the formulation maintained its release characteristics under accelerated storage conditions (40°C / 
75% RH) for up to three months. This study confirms the potential of Ramosetron HCl transdermal patches as an 
effective alternative to oral dosage forms, providing sustained drug delivery and enhanced patient compliance.  
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1. Introduction

Transdermal Drug Delivery Systems (TDDS) offer a controlled and consistent method of drug delivery, effectively 
bypassing hepatic first-pass metabolism and minimizing side effects associated with oral and intravenous therapies. 
TDDS is particularly suited for drugs with short biological half-lives and those requiring sustained, slow release. The 
stratum corneum, the outermost layer of the skin, presents a significant barrier that necessitates specific 
physicochemical properties in drugs for successful permeation. The efficacy of TDDS relies on pharmacokinetic 
parameters such as terminal half-life, area under the curve, volume of distribution, and steady-state concentration. Drug 
permeation through the skin, governed by Fick’s laws of diffusion, depends on factors including drug concentration, 
permeability coefficient, and skin characteristics. Effective TDDS design includes various types, such as drug-in-
adhesive, multi-laminate, reservoir, and matrix systems, each influencing drug release rates and overall effectiveness. 

Ramosetron HCl (C₁₇H₁₇N₃O; molecular weight 279.34 g/mol) is a highly selective 5-HT₃ serotonin receptor antagonist, 
marketed as Ibset in India for the management of nausea, vomiting, and diarrhea-predominant irritable bowel 
syndrome. It demonstrates superior potency and extended antiemetic effects compared to first-generation 5-HT₃ 
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antagonists. While it is generally well-tolerated, Ramosetron HCl may cause side effects such as headache and 
constipation and is contraindicated in individuals with hypersensitivity to the drug. 

To optimize the formulation of Ramosetron HCl in TDDS, excipients play a crucial role. Hypromellose (C₁₇H₁₇N₃O) is a 
fibrous powder used as a binder, coating agent, and viscosity enhancer, which forms a viscous solution in cold water, 
aiding in tablet binding, film coating, and thickening. Polyvinyl Pyrrolidone (PVP K-30), with a molecular weight of 
approximately 50,000 (C₆H₉NO)ₙ, functions as a binder, disintegrant, and solubilizer, enhancing drug dissolution and 
stabilizing suspensions. Polysorbate 80 (Tween 80), a viscous amber liquid with the molecular formula C₆₄H₁₂₄O₂₆, 
serves as an emulsifier and surfactant, stabilizing aqueous formulations and finding applications in both 
pharmaceuticals and cosmetics. Combining these excipients with Ramosetron HCl aims to improve the formulation's 
stability, release profile, and overall efficacy in TDDS.  

2. Material and methods 

2.1. Materials and equipment’s 

The materials used in this study include Ramosetron HCl obtained from Pharmatrain, Hyderabad, and various grades of 
HPMC (K15M, K100M, K200M), PVP K30, Tween 80, and Sorbitol, all sourced from S.D. Fine Chemicals, Mumbai. The 
equipment utilized comprises an Electronic Balance (AUW 2200) from Shimadzu Corporation, Japan; a pH Meter from 
Mettler Toledo, India; UV-Visible Spectrophotometers (UV-1601, UV-2550) from Shimadzu Corporation, Japan; 
Dissolution Apparatus TDT-08L and a Disintegration Tester (USP), both from Electro Lab, India; a Vernier Caliper from 
Mitutoyo Corp, Japan; a Hot Air Oven from Servewell Instruments; a Sonicator from Sidilusonicator; and a Gyratory 
Shaker from Lab India. 

2.2. Method 

2.2.1. Calibration Curve of Ramosetron HCl in 7.4 pH Phosphate Buffer 

Preparation of 7.4 pH Phosphate Buffer 

A 7.4 pH phosphate buffer was prepared by mixing 50 mL of 0.2 M potassium dihydrogen orthophosphate solution with 
22.4 mL of 0.2 M sodium hydroxide in a 200 mL volumetric flask. The solution was diluted to the mark with distilled 
water and the pH was adjusted to 7.4 using dilute sodium hydroxide. 

Preparation of Ramosetron HCl Standard Stock Solution (100 µg/mL) 

A stock solution was prepared by dissolving 10 mg of Ramosetron HCl in 7.4 pH phosphate buffer to a final volume of 
100 mL in a volumetric flask. 

Determination of λmax 

From the stock solution, a 10 µg/mL solution was prepared and scanned between 200 and 400 nm using a UV-Vis 
spectrophotometer. The λmax of Ramosetron HCl was determined to be 240 nm. 

2.3. Calibration Curve 

Aliquots of the stock solution were diluted to 1, 2, 3, 4, and 5 µg/mL in 10 mL volumetric flasks with 7.4 pH phosphate 
buffer. Absorbances were measured at 240 nm. The procedure was conducted in triplicate for accuracy. 

2.3.1. Fourier Transform Infrared Spectroscopy (FTIR) 

Infrared spectra of pure Ramosetron HCl, pure polymers, and their physical mixtures were recorded using the KBr pellet 
method in the range of 4000 cm⁻¹ to 400 cm⁻¹ to assess potential drug-polymer interactions. 

2.3.2. Formulation of Ramosetron HCl Transdermal Patches 

Transdermal patches were prepared via solvent casting. Ramosetron HCl was dissolved in a 1:1 ratio of 
dichloromethane (DCM) and ethanol. After sequential addition of other ingredients and continuous stirring, the solution 
was cast onto a 9 cm diameter glass petri dish and dried at 70°C to form peelable films. The films were then cut into 2.0 
cm × 2.0 cm pieces, each with an area of 4.0 cm² and containing 10 mg of Ramosetron HCl. 
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 Table 1 Formulation of Ramosetron Hcl Transdermal patches 

Ingredients F1 F2 F3 F4 F5 F6 F7 F8 F9 

Ramosetron Hcl 10 10 10 10 10 10 10 10 10 

HPMC K15M 40 40 40 - - - - - - 

HPMC K100M - - - 40 40 40 - - - 

HPMC K200M - - - - - - 40 40 40 

PVP K30 20 40 60 20 40 60 20 40 60 

Tween-80 10 10 10 10 10 10 10 10 10 

sorbitol 60 40 20 60 40 20 60 40 20 

2.4. Evaluation of Transdermal Patches 

 Thickness: Measured at three different locations using a micrometer, with mean values calculated. 
 Weight Variation: Assessed by weighing randomly selected patches individually. Each formulation was tested. 
 Drug Content: Patches of 1 cm² were dissolved in 5 mL of dichloromethane, and the volume was made up to 10 

mL with 7.4 pH phosphate buffer. The dichloromethane was evaporated using a rotary vacuum evaporator at 
45°C. The solution was filtered through a 0.45 μm membrane, diluted as needed, and absorbance was measured 
at 240 nm using a UV-Vis spectrophotometer. 

 Folding Endurance: Determined by repeatedly folding a film at the same place until it broke, with the number 
of folds before breaking recorded. 

 Tensile Strength: Measured by gradually increasing the pulling force on the patch until it broke. Elongation and 
tensile strength were calculated using a pulley system and magnifying glass on graph paper. 

 In-Vitro Skin Permeation Studies: Conducted using a Franz diffusion cell with a receptor compartment of 22.5 
mL. Excised rat abdominal skin (Wistar albino) was mounted between donor and receptor compartments. The 
patches were placed over the skin, covered with paraffin film, and the receptor compartment was filled with 
7.4 pH phosphate buffer. The solution was continuously stirred at 50 rpm, and the temperature was maintained 
at 32 ± 0.5°C. Samples were withdrawn at various time intervals, analyzed spectrophotometrically, and the 
cumulative percentage of drug permeated per square centimeter was plotted against time. 

 Stability Studies: The objective of stability studies is to identify and manage factors that could compromise the 
stability of the active ingredient and ensure the formulation maintains its therapeutic efficacy and safety over 
time. Stability studies are essential to assess the long-term stability of the drug formulation, to select 
appropriate excipients, and to ensure no toxic degradation products are formed. Long-term stability studies 
are crucial for defining shelf life and expiration dates. Various stability conditions include: 

Table 2 Stability Storage Conditions 

Stability Storage Category Testing schedule for Physical and Chemical attributes 

LONG TERM 25°C ± 2°C / 60% ± 5% RH 3, 6, 9, 12, 18, 24 and annually till expiry and 6 Months hence after. 

ACCELERATED 40°C ± 2°C / 75% ± 5% RH 1, 2, 3 & 6 Months 

INTERMEDIATE 30°C ± 2°C / 60% ± 5% RH 3, 6, 9 & 12 Months 

ZONE IV 30°C ± 2°C / 70% ± 5% RH 3, 6, 9, 12, 18, 24 and annually till expiry and 6 Months hence after. 

3. Results and discussion 

3.1. Calibration curve of Ramosetron Hcl in 7.4pH phosphate buffer solution: 

Standard calibration curve of Ramosetron Hcl was drawn by plotting absorbance versus concentration. The λmax of 
Ramosetron Hcl in 7.4pH phosphate buffer solution was found to be 240nm. 
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Table 3 Calibration data of Ramosetron Hcl in 7.4pH phosphate buffer at 240nm 

Concentration (µg/ml) Absorbance 

0 0 

1 0.147 

2 0.314 

3 0.481 

4 0.624 

5 0.789 

 

 

Figure 2 Standard calibration curve of Ramosetron Hcl in 7.4pH phosphate buffer solution 

3.2. Compatibility study by FTIR 

The compatibility of the drug with polymer was evaluated by performing FTIR analysis of standard drug and best 
formulation. 

 

Figure 3 FTIR graph of Ramosetron Hcl pure drug 
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Figure 4 FTIR graph of Ramosetron Hcl best formulation 

Table 4 Evaluation parameters of Ramosetron Hcl Transdermal patches 

Formulation code Thickness Weight variation Drug content Folding endurance Tensil strength 

F1 162 Pass 98.23 201 2.74 

F2 158 Pass 99.14 199 2.96 

F3 153 Pass 99.67 212 3.12 

F4 160 Pass 98.83 219 3.04 

F5 157 Pass 99.37 210 2.83 

F6 152 Pass 99.95 206 2.92 

F7 147 Pass 99.67 218 3.15 

F8 138 Pass 99.82 237 2.86 

F9 156 Pass 99.37 204 2.46 

Table 5 In-vitro drug release data for Transdermal patches 

Time (Hrs) F1 F2 F3 F4 F5 F6 F7 F8 F9 

0 0 0 0 0 0 0 0 0 0 

1 32 28 25 20 16 5 12 5 0 

2 46 39 34 38 24 8 20 11 3 

3 58 52 50 59 36 15 28 19 9 

4 64 59 55 67 53 20 42 31 17 

6 85 78 69 78 64 29 56 42 28 

8 96 89 81 84 78 48 62 55 43 

10 100 95 89 99 86 56 75 67 51 

12 100 100 96 100 98 74 81 73 63 
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Figure 5 Comparative Dissolution profile for F1, F2 and F3 formulations 

 

Figure 6 Comparative Dissolution profile for F4, F5 and F6 formulations 

 

Figure 7 Comparative Dissolution profile for F7, F8 and F9 formulations 
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Figure 8 First order plot for F1, F2 and F3 formulations 

 

Figure 9 First order plot for F4, F5 and F6 formulations 

 

Figure 10 First order plot for F7, F8 and F9 formulations 
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Figure 11 Higuchi plot for F1, F2 and F3 formulations 

 

Figure 12 Higuchi plot for F4, F5 and F6 formulations 

 

Figure 13 Higuchi plot for F7, F8 and F9 formulations 
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Figure 14 Peppas plot for F1, F2 and F3 formulations 

 

Figure 15 Peppas plot for F4, F5 and F6 formulations 

 

Figure 16 Peppas plot for F7, F8 and F9 formulations 
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 Table 6 R2 and ‘n’ result table 

Formulation code 
R2 Values 

N Value 
Zero order First order Higuchi Peppas 

F1 0.852 0.951 0.98 0.982 0.483 

F2 0.9 0.986 0.992 0.991 0.535 

F3 0.918 0.992 0.995 0.99 0.556 

F4 0.869 0.84 0.973 0.94 0.624 

F5 0.96 0.991 0.971 0.984 0.753 

F6 0.988 0.964 0.867 0.989 1.113 

F5 0.963 0.992 0.966 0.987 0.793 

F6 0.987 0.99 0.926 0.986 1.103 

F7 0.987 0.969 0.858 0.979 1.709 

 

3.3. Stability studies 

Selected formulation F5 was stored at 40°C ± 2°C / 75% ± 5% RH or a period of 3 months. Samples were analyzed after 
storage for 1, 2 and 3 month and evaluated. 

Table 7 In-vitro release profile of F5 during Stability studies (40°C ± 2°C / 75% ± 5% RH) 

Time (Hrs) Initial Month 1 Month 2 Month 3 

0 0 0 0 0 

1 16 15 16 14 

2 24 22 25 24 

3 36 35 36 33 

4 53 53 51 51 

6 64 62 63 62 

8 78 77 76 75 

10 86 84 85 84 

12 98 97 97 98 
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Figure 17 In-vitro release profile of F9 during Stability studies (40°C ± 2°C / 75% ± 5% RH) 

4. Summary and Conclusion 

 Ramosetron Hcl transdermal patches were successfully prepared with HPMC K15M and HPMC K100M and 
HPMC K 200M. 

 The amount of plasticizer tween 80 was critical for patch formation and separation properties.  
 Tween 80 was selected for solubility enhancer and plasticizer during shelf life period. 
 It was concluded that formulations F-5 was found to be satisfactory batche and was optimized for the desirable 

properties.  
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